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Abstract 
Background: Heart disease and other cardiovascular 

conditions remain a significant global health challenge, 

contributing to a high number of fatalities annually. 

Despite technological advancements, current 

cardiovascular monitoring methods, especially those 

analyzing electrocardiograms (ECGs), often fail to capture 

intricate patterns and subtle irregularities, highlighting 

the need for a more sophisticated approach. This study 

proposes a novel framework utilizing deep learning, 

specifically combining the radial basis function (RBF) for 

feature extraction and a deep belief network (DBN) for 

classification, to enhance ECG data analysis. Methods: The 

proposed method involves preprocessing ECG signals to 

reduce noise, correct baseline drift, and scale amplitude. 

Feature extraction is performed using the RBF, which 

captures intricate temporal patterns in the ECG signals. 

Subsequently, the DBN classifies the extracted features, 

leveraging its hierarchical learning capabilities to identify 

subtle correlations and patterns. The model's performance 

was evaluated using Python simulations on a high-

performance computing system, benchmarked against 

existing methods including Dual-Stage DL, DWT-ML, and 

M1M2. Results: The RBF-DBN model demonstrated 

superior performance across several metrics, achieving  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

99% accuracy, precision, and recall at the 1000th time 

step, outperforming Dual-Stage DL, DWT-ML, and M1M2 

methods. The RBF-DBN method demonstrated a 

remarkable accuracy of 99%, surpassing the current Dual-

Stage DL method by 2%. Additionally, the approach 

maintained exceptional sensitivity and recall at 99%. The 

precision of the model was also 99%, and the F1 score, 

which balances recall and precision, further underscored 

the model's efficacy in real-time cardiovascular 

monitoring. Conclusion: The integration of RBF and DBN 

in ECG analysis significantly enhances the precision and 

accuracy of cardiovascular monitoring. 

Keywords: Deep learning, Cardiovascular monitoring, 

Electrocardiogram (ECG), Time-series analysis, Real-time intervention, 

Radial Basis Function (RBF), Deep Belief Network (DBN), Deep Learning 

 

 

Introduction 

Heart disease and other cardiovascular conditions continue to be a 
major public health problem since they are responsible for a 
disproportionately high number of fatalities across the globe 
(Śmigiel et al., 2021). Despite advancements in medical technology, 
the complex difficulties associated with monitoring patients dealing 
with cardiovascular conditions and responding in a timely manner 
continue to exist (Sangaiah et al., 2020). When it comes to the data  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Significance | Combining RBF and DBN improves real-time 

cardiovascular monitoring by enhancing feature extraction and 
classification accuracy, addressing limitations of conventional methods. 
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obtained from electrocardiograms (ECGs), conventional methods 
of cardiovascular monitoring might occasionally have difficulty 
capturing intricate patterns and subtle irregularities (Wu et al., 
2021; Hua et al., 2020). These limitations bring to light the necessity 
of a framework that is both more sophisticated and more advanced, 
and that makes use of deep learning to improve analysis and 
decision-making respectively (Krittanawong et al., 2021). 
In ECG monitoring, some of the problems include suboptimal 
accuracy, restricted real-time capabilities, and reliance on 
conventional feature extraction methods that may miss critical 
information (Kłosowski et al., 2020; Murat et al., 2020). To 
overcome these challenges, which demand for an alternative to the 
approach that is currently being taken (Pandey et al., 2020), it is 
necessary to have a more comprehensive and accurate 
understanding of cardiovascular health (Wasimuddin et al., 2020; 
Sahoo et al., 2020). 
One of the primary problems that this research endeavors to 
address is the fact that the existing cardiovascular monitoring 
systems are not adequate to provide patients with information that 
is both accurate and up to date regarding their condition. To avoid 
the disadvantages of conventional methods, the purpose of this 
study is to build a robust framework that incorporates the most 
cutting-edge algorithms for feature extraction and classification. 
It is recommended that a deep learning model be constructed that 
is capable of properly extracting features by utilizing the radial basis 
function. A deep belief network will be utilized to achieve the 
objective of effectively identifying time-series data that was 
obtained from electrodes. It will be important to validate the model 
by performing Python simulations to ensure that it can be 
monitored in real time. The performance of the proposed model 
will be compared to that of established approaches to demonstrate 
that the proposed model is superior to what is already available. 
In this paper, a novel neural fusion model is presented that 
addresses the challenges that are related with the monitoring of 
cardiovascular patients. This model is achieved by combining the 
most advantageous characteristics of deep belief networks with 
radial basis functions. The distinctive feature of this model is that it 
has the potential to exceed the methods that are already in use in 
terms of delivering insights on the illnesses of patients that are both 
more precise and more quickly. The breakthroughs in 
cardiovascular monitoring that have been made feasible because of 
this research have made it possible to improve healthcare 
procedures and ensure better outcomes for patients. 
2. Related Works 
The monitoring of cardiovascular function has been the focus of a 
great deal of study, all of which has contributed significant new 
knowledge to the ongoing search for more effective diagnostic and 
treatment methods. The research by Denysyuk et al. (2023) on the 
application of machine learning algorithms to electrocardiogram 

analysis stands out among these. The utilization of computational 
methods for the assessment of cardiovascular health is becoming 
increasingly popular, and the research conducted by these 
individuals emphasizes the potential of data-driven approaches to 
identify tiny irregularities. The work by Singh and Krishnan (2023) 
establishes the platform for our research, which was centered on the 
radial basis function for robust feature extraction. They did this by 
drawing attention to the issues associated with standard methods 
and providing alternative approaches. Moreover, Sun et al. (2023) 
investigated the possible applications of deep learning in the 
medical field, with a particular emphasis on cardiovascular diseases. 
Considering their research on the application of deep belief 
networks to medical data processing, their research concluded that 
it would be beneficial to incorporate this advanced neural network 
design into our proposed model for classification. Other methods 
include Dual-Stage DL (Cho et al., 2021), the M1M2 method (Akter 
et al., 2022), and the Discrete Wavelet Transform and Machine 
Learning (DWT-ML) (Shen et al., 2022). 
This research distinguishes out from the others because it combines 
a deep and machine learning model with a radial basis function and 
a deep belief network. These studies have made significant 
contributions to the field, but the current research is particularly 
noteworthy. It is hoped that these methods will provide a better 
solution to the problem of cardiovascular patient monitoring by 
overcoming the drawbacks of past studies. These methods are a 
novel addition to the field of cardiovascular health research, which 
is constantly evolving thanks to new developments. 
 
3. Proposed Method 
With our approach, research introduced a new neural model as in 
Figure 2 to address the shortcomings of the cardiovascular 
monitoring systems that are currently in use.  
A deep belief network for the classification of time-series data 
collected from electrodes and a radial basis function for feature 
extraction are both incorporated into the approach. Both 
components are vital to the algorithm. 
In the analysis of ECG data, the radial basis function is employed to 
extract features, enabling the model to overcome the  
 
 
limitations of conventional feature extraction methods and  
effectively capture the intricate patterns and nuances within the 
time-series data. This approach aims to enhance the precision and 
depth of ECG signal extraction within the model. Furthermore, the 
deep belief network supports the model's classification capabilities, 
making it well-suited for learning hierarchical data representations, 
which is crucial given the complexity of heart rate monitoring. By 
leveraging a deep belief network, the model achieves greater 
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precision and specificity in classifying ECG data, leading to 
improved detection of illnesses and anomalies.. 
3.1. Pre-processing of ECG Signal from Electrodes: 
Our method includes several phases, one of which is the pre-
processing of ECG signals from electrodes. This phase is essential 
because it ensures the quality and dependability of the data before 
further analysis is performed. This stage systematically lowers noise 
and enhances the signal integrity to improve the accuracy of feature 
extraction and subsequent classification. This stage is also 
responsible for improving the signal integrity. 
Noise Reduction: To decrease the impact of interference and 
artifacts, the first step is to apply noise reduction algorithms to the 
ECG signal before proceeding. Muscle artifacts and baseline drift 
are two examples of the many kinds of signal contamination that 
could cause problems. Through the application of filtering and 
signal processing techniques, our objective is to lessen the impact of 
these noises and improve the accuracy of the electrocardiogram 
waveform. The usage of a bandpass filter is one method that can be 
utilized to reduce background noise. This equation, which 
represents the filter, is exactly as follows: 

( ) ( ) ( )y t x h t dτ τ τ
∞

−∞

= −∫  

Where  
x(t) is the original signal,  
h(t) is the impulse response of the filter, and  
y(t) is the filtered signal. 
Baseline Correction: Changes in the baseline of the ECG, also 
known as baseline correction, have the potential to conceal 
significant characteristics. By incorporating baseline correction 
techniques into our pre-processing, research can normalize the 
baseline and eliminate this kind of interference. It is especially 
important to take this step while conducting long-term monitoring 
since it guarantees that subsequent investigations will continue to 
be correct. The baseline correction process involves subtracting the 
predicted baseline signal B(t) from the original signal. This is the 
essence of the entire process. 
y(t)=x(t)−B(t) 
Amplitude Scaling: The amplitude of the ECG signal is 
standardized through the employment of amplitude scaling 
algorithms during the pre-processing stage. The quality of 
comparisons and the precision of feature extraction are both 
improved because of this, as it ensures that the signal amplitudes 
remain consistent across all the recordings. The scaling of 
amplitude is made possible by normalization. The calculation for 
our normalized signal, denoted by y(t), is as follows: 
y(t) = [x(t)−mean(x)]/std(x) 
Where  
mean(x) is the mean and  
std(x) is the standard deviation of the original signal. 

Signal Segmentation: The ECG signal is separated into different 
phases, which include the P, QRS, and T waves. This process is 
referred to as phase separation. Through the utilization of this 
segmentation, research can conduct a more in-depth examination 
of the individual components, which in turn enables us to extract 
valuable characteristics for the purpose of future classification. It is 
necessary to precisely segment the cardiac cycle to accurately 
capture the temporal properties of the cardiac cycle. Certain stages 
of the ECG signal, such as the QRS complex, can be separated by 
employing a method that is based on thresholds. A threshold, 
denoted by T, can be utilized as a means of expressing the 
segmented signal, denoted by y(t).  

( ) ( ) ( )
0

x t if x t T
y t

Otherwise
 >
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3.2. RBF for Feature Extraction: 
When it comes to extracting characteristics from ECG signals, our 
method mainly relies on the Radial Basis Function and its 
capabilities. By collecting and emphasizing minor patterns within 
the time-series data, the mathematical function plays a significant 
role in enhancing the discriminative capacity of the features 
recovered for later analysis. This is accomplished by collecting and 
highlighting the patterns. 
Radial Basis Function (RBF) Equation: 
In accordance with the accepted norm, the Radial Basis Function is 
defined as: 

ϕ(x,c)=exp 
2

22
x c
σ

 −
− 
 
 

 

where,  
ϕ(x,c) represents the RBF between the input vector x and a center 
vector c,  
∥x−c∥ is the Euclidean distance between the vectors, and  
σ is a parameter that controls the spread of the function.  
During the process of feature extraction, the RBF receives each 
time-series data point that is present in the ECG signal. When the 
figures are generated, they indicate the locations along the signal 
where the RBF is activated. The selection of centers (c) has a 
significant impact on the appearance of the elements that are 
highlighted. RBF is a very useful tool for analyzing ECG signals that 
contain temporal patterns. The function does an excellent job of 
attracting attention to distinctions and distinctive forms that may 
identify cardiac events such as the P, QRS, and T waves. This is since 
it is reliant on the distance between the two points. 
Tuning the spread parameter (σ) to align with the characteristics of 
the ECG data requires careful thought. A correctly calibrated σ is 
essential for the RBF to possess the capability of effectively 
capturing significant characteristics without being overly sensitive 
or having an unduly broad range of coverage. The RBF-transformed 
information is provided as input to the neural fusion model, which 
results in an improvement in the model capacity to classify 
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cardiovascular illnesses. to inform the subsequent steps of the 
classification process, a comprehensive feature set is utilized. This 
feature set is trained by utilizing the RBF ability to detect minimal 
changes in the ECG signal. 
Algorithm: Radial Basis Function for Feature Extraction 
Input: 
ECG signal data (X) with N data points 
Centers (C) for the Radial Basis Function 
Spread parameter (σ) 
Output: 
Feature matrix (F) representing the RBF-transformed features 
Initialize an empty feature matrix F with dimensions N×M, where 
M is the number of RBF centers. 
For each data point xi in the ECG signal:  

Fi,j = exp 

2

22
i ix c
σ

 −
− 
 
 

 

where Cj is the jth center vector. 
Normalize the rows of the feature matrix F to ensure consistent 
scale across features:  

,
,

,
1

i j
i j M

i k
k

F
F

F
=

=

∑

 

The resulting feature matrix F represents the RBF-transformed 
features of the ECG signal. 
3.3. DBN for Classification: 
A significant component of our method is the Deep Belief Network, 
which is responsible for processing the ECG data and employing it 
as a classification engine. Artificial neural networks, such as DBN, 
are excellent at learning hierarchical data representations. As a 
result, they are ideally suited for identifying subtle correlations and 
patterns in time-series data, such as ECG signals. 
In most cases, a Distributed Boltzmann Network (DBN) consists of 
a stack of Restricted Boltzmann Machines (RBMs) that are 
connected to one another and stacked in multiple layers. Three 
levels make up the network: the input level, the concealed level, and 
the output level. The hidden layers make use of the input data to 
learn hierarchical features in a manner that follows a progressive 
progression. RBMs, which are RBMs that learn a distribution of 
input probabilities, are the foundation upon which DBNs are built.  
The energy that an RBM possesses: 
E(v,h)=−∑iaivi−∑jbjhj−∑i,jvihjwij 
where: 
v is the visible layer, 
h is the hidden layer, 
ai and bj are biases, 
wij is the weight between visible node i and hidden node j. 
The probability of a visible vector and hidden vector is given by the 
sigmoid function: 

P(v,h)= 
1
Z

exp(−E(v,h)) 

where Z is the normalization constant. 
The Gibbs sampling method is utilized to obtain a sample of the 
joint distribution of visible and concealed units. The following is the 
formula for calculating the probability: 
P(hj=1∣v)=σ(bj+∑iviwij) 
P(vi=1∣h)=σ(ai+∑jhjwij) 
where σ is the sigmoid function. 
The capacity to reassemble the input data and recognize essential 
qualities is something that RBMs learn to do when they participate 
in training. By utilizing this unsupervised learning process, the 
network can independently discover representations within the 
data that it is given as input. Pre-training and fine-tuning are both 
components of the training technique that is utilized by the DBN. 
When the network is in the pre-training phase, each RBM layer is 
taught in an unsupervised manner. This is done so that the network 
can begin teaching itself to recognize lower-level properties. An 
application of supervised learning is utilized to fine-tune the 
network for the classification task that has been provided. These 
data have been labeled. 
Deep neural networks are particularly effective when it comes to 
feature learning since they can automatically extract abstract and 
hierarchical data representations. This feature is notably beneficial 
for categorizing ECGs, which can be difficult to diagnose since even 
minute alterations and intricate patterns can have a significant 
impression. 
For representing complex relationships and identifying non-linear 
patterns in the ECG data, the DBN employs non-linear activation 
functions (such as sigmoid or rectified linear units, or ReLU) at each 
node across the network. Backpropagation is a technique that is 
utilized to fine-tune the weights and biases of the network. The 
following is the most recent weight update for a weight wij is given 
by: 
Δwij = ϵ(⟨vihj⟩data - ⟨vihj⟩model) 
where  
ϵ is the learning rate, and data 
⟨vihj⟩data and ⟨vihj⟩model are the expected values of vihj under the data 
distribution and the model distribution, respectively. 
When the DBN reaches its final layer, classification is carried out by 
that layer. The hierarchical features that have been learned are used 
to construct a probability distribution that encompasses all the 
possible classes. to assist in the diagnosis of cardiovascular 
disorders, the output displays the level of confidence that the 
network has in each category. Calculating the probability for each 
class c in the final classification layer by utilizing the softmax 
activation function is a popular approach that is widely followed: 
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where: 
y is the predicted class, 
h(L) is the output of the last hidden layer, 
Wcj are weights connecting the last hidden layer to the output layer, 
bc are biases for the output layer. 
Algorithm: Deep Belief Network for Classification 
Input: Labeled training data (X,Y) where X is the input features and 
Y is the corresponding class labels. Number of hidden layers L. 
Number of hidden units in each layer. Learning rate ϵ. Number of 
iterations for pre-training and fine-tuning. 
Output: Trained Deep Belief Network parameters (W, b). 
Step 1: Initialize weights (W) and biases (b) for each layer 
randomly. 
Step 2: For each hidden layer l from 1 to L−1: 
Step 3: Train a RBM using Contrastive Divergence (CD) 
Step 4: Update weights and biases using the learned RBM 
parameters. 
Step 5: Use backpropagation with labeled data to fine-tune the 
entire DBN. 
Step 6: Forward pass: Compute activations for each layer using 
the learned weights and biases. 
Step 7: Compute error at the output layer. 
Step 8: Backward pass: Update weights and biases using 
backpropagation and the computed errors. 
Step 9: Given a new input Xnew: 
Step 10: Perform a forward pass through the DBN to compute the 
output layer activations. 
Step 11: Apply the softmax function to obtain class probabilities. 
Step 12: Repeat steps 2-4 for a specified number of iterations or 
until convergence. 
4. Experimental Settings 
Python is used as the primary programming language that research 
utilized to carry out simulations within our experimental 
environments. TensorFlow and PyTorch are two examples of well-
known deep learning tools that research utilized to construct the 
Dual-Stage Deep Learning (Dual-Stage DL) model that was 
proposed. The simulations were carried out using a high-
performance computer system that was equipped with Graphics 
Processing Units (GPUs) to expedite the training and inference 
processes. Research trained and evaluated the model on a large 
dataset of annotated ECG signals to guarantee a comprehensive 
evaluation across a variety of heart states. 
Research utilized criteria that are industry standards, such as the F1 
score, sensitivity, specificity, and accuracy, to evaluate the 
effectiveness of our strategy. All these criteria were utilized to 
objectively evaluate the accuracy of the model in terms of 

categorizing a variety of cardiac events and states. For providing a 
comprehensive comparison, research benchmarked our Dual-Stage 
DL against a wide variety of existing approaches. Methods such as 
the M1M2 method and the Discrete Wavelet Transform and 
Machine Learning (DWT-ML) approach were among these 
methods. This comparison considered several factors, including the 
accuracy of classification, the efficiency of processing, and the 
capability of monitoring in real time. When it came to monitoring 
cardiovascular patients, our findings indicated that the Dual-Stage 
DL was the most effective method among the several ways that were 
available. This was the case in terms of both efficiency and accuracy. 
Accuracy: A comparison is made between the total number of 
occurrences and the number of cases that were correctly identified 
to determine the level of precision that the classification model 
possesses. It provides a comprehensive analysis of the accuracy of 
the model in identifying a variety of cardiac conditions and 
occurrences. 
Sensitivity (Recall): The ability of a model to reliably recognize 
positive class occurrences out of all true positive cases is what 
research means when research speaks on sensitivity. Another name 
for it is the recall rate or the genuine positive rate. Within the 
context of cardiovascular monitoring, sensitivity refers to the 
degree of precision with which a model identifies actual instances 
of heart abnormalities. 
Specificity: The ability of a model to reliably identify instances of a 
negative class out of all the actual cases of a negative class is what is 
meant by the term specificity. When it comes to cardiovascular 
monitoring models, specificity refers to the degree to which they 
can recognize situations in which there are no present heart 
problems. 
F1 Score: The F1 score is a balanced statistic that considers both 
false positives and false negatives; it is the harmonic means of recall 
and precision. The F1 score is a method for determining the 
accuracy of a test. It shines brightest in circumstances in which 
there is a significant gap between different socioeconomic classes. 
When it comes to cardiovascular monitoring, a high F1 score 
indicates that the individual has demonstrated a balanced 
performance in recognizing both positive and negative occurrences. 
 
5. Results and Discussion 
The results in figure 3 indicate the comparative performance of the 
proposed RBF-DBN approach with the existing Dual-Stage DL, 
DWT-ML, and M1M2 approaches in cardiovascular patient 
monitoring. The results were obtained by using a total of 1000 
distinct time steps. After 100 time steps, the Dual-Stage DL 
technique achieves an astounding 85% accuracy, which is 
significantly higher than the accuracy achieved by DWT-ML (72% 
accuracy) and M1M2 (78% accuracy). The RBF-DBN technique 
that was recommended exhibits remarkable performance even at 
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this level, with an accuracy of 92%. As the simulation progresses, 
the accuracy of all approaches increases, which is a measure of the 
model ability to learn and adapt to shifting conditions. The DWT-
ML and M1M2 algorithms are not able to achieve the 99% accuracy 
rate that is recommended for the RBF-DBN technique. However, 
the Dual-Stage DL approach can achieve this level of accuracy at the 
1000th time step. 
Since it maintains a consistently higher level of accuracy 
throughout the simulation, the RBF-DBN technique can deal with 
a wide variety of cardiac situations throughout a variety of time 
intervals. The approach is superior to the competition because it 
makes use of the discriminative capabilities of the Deep Belief 
Network and the Radial Basis Function to extract nuanced features. 
It is demonstrated by this pattern that the RBF-DBN model that has 
been developed has the potential to surpass the approaches that are 
now being used and become a reliable resource for monitoring 
cardiovascular patients in real time. 
A comparison of the performance of the proposed RBF-DBN 
method to that of existing cardiovascular monitoring methods, 
such as Dual-Stage DL, DWT-ML, and M1M2, is revealed by the 
precision values across a 1000 different time steps as in Figure 4. At 
the first 100-time steps, the Dual-Stage DL technique achieves an 
accuracy of 82%, which is much higher than the accuracy achieved 
by DWT-ML (68% accuracy) and M1M2 (75% accuracy). Even at 
this level, the RBF-DBN technique that was recommended exhibits 
outstanding precision, as evidenced by its impressive accuracy of 
90%. Through the entirety of the simulation, this pattern remains 
consistent; by the time the 1000th time step rolled around, the RBF-
DBN had outperform all the earlier strategies in terms of accuracy, 
continuing its long-standing tradition of outperforming them. On 
the other hand, the Dual-Stage DL method makes it possible to 
achieve a precision of 97%, demonstrating that both approaches 
have the potential to enhance their precision over time. 
As a result of its consistently higher precision throughout the 
simulation, the RBF-DBN method can demonstrate its capability to 
minimize the number of false positives and improve the reliability 
of positive predictions in cardiovascular monitoring. The RBF-
DBN can generate accurate positive predictions because it 
combines the discriminative capabilities of the Deep Belief Network 
with the Radial Basis Function, which enables sophisticated feature 
extraction. This combination enables the RBF-DBN to generate 
accurate positive predictions. With this encouraging trend, it 
appears that the approach that was proposed could be used in real-
time cardiovascular health evaluations. This would provide medical 
professionals with a more effective method to identify positive cases 
and potential heart problems. 
There are three cardiovascular monitoring approaches that are 
currently in use: Dual-Stage DL, DWT-ML, and M1M2. The recall 
values across 1000 different time steps provide a good view into how 

the proposed RBF-DBN method compares to these three methods 
as in Figure 5. When compared to DWT-ML (72% recall) and 
M1M2 (78% recall), the Dual-Stage DL method exceeds both of 
these methods with a recall rate of 88% after 100 time steps. With a 
recall rate of 92%, the RBF-DBN technique that was recommended 
has already demonstrated an encouraging level of success in 
capturing a significant proportion of genuine favorable 
circumstances. At the 1000th time step of the simulation, the RBF-
DBN had achieved a recall 99%, which was an even greater 
achievement than any of the techniques that had come before it. On 
the other hand, the Dual-Stage DL technique achieves a perfect 
recall each time, demonstrating that both systems have the potential 
to improve further in terms of recall sensitization over time. 
It is the continuous higher recall throughout the simulation that 
exemplifies the efficacy of the RBF-DBN technique in 
cardiovascular monitoring. This improves the model sensitivity to 
true positive events while simultaneously reducing the number of 
false negatives that occur. Because it combines the discriminative 
power of the Deep Belief Network with the nuanced feature 
extraction capabilities of the Radial Basis Function, the RBF-DBN 
can capture a greater proportion of positive cases than other similar 
networks. Based on this pattern, it appears that the model that was 
provided could be an excellent instrument for clinicians to utilize in 
real-time cardiovascular health checks, which would make them 
more aware of the possibility of cardiac abnormalities. 
Using the F1 measure as in figure 6 over 1000 different time steps, 
the new RBF-DBN method is compared to the existing 
cardiovascular monitoring methods, which include Dual-Stage DL, 
DWT-ML, and M1M2. This comparison offers a comprehensive 
analysis of the equilibrium between recall and precision. After the 
first 100-time steps, the Dual-Stage DL technique obtains a higher 
F1 measure of 85% than the DWT-ML technique, which achieves 
70%, and the M1M2 technique, which achieves 76%. With an F1 
score of 91%, the RBF-DBN technique that was proposed 
demonstrates promise in terms of establishing a balance between 
recall and precision, which is rather remarkable. Additionally, the 
RBF-DBN had attained an F1 measure of 99% at the 1000th time 
step, which further demonstrates its better performance in 
comparison to other approaches that are currently in use. The Dual-
Stage DL method provides an F1 measure of 99%, which serves as 
an illustration of how both approaches can be modified to get a 
balanced performance over the course of time. 
While simulating the monitoring of cardiovascular patients, the 
RBF-DBN technique maintained a higher F1 measure throughout 
the entire process. This demonstrates the technique ability to strike 
the optimal balance between reducing the number of false positive 
or false negative results. Because it combines the Radial Basis 
Function, which is effective at extracting detailed characteristics, 
with the discriminative capacity of a Deep Belief Network, the RBF- 
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Figure 1. ECG Monitoring using Machine Learning [5] 
 

 
Figure 2. Proposed Architecture 
Table 1. Experimental Setup 

Experimental Setup Values/Settings 
Simulation Tool Python with PyTorch 
Training Epochs 100 epochs 
Batch Size 32 
Learning Rate 0.001 

 
Figure 3.  Accuracy 
 

 
Figure 4. Precision 
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Figure 5.  Recall 

 
Figure 6. F-Measure 
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DBN can strike a balance between recall and precision. This is 
because the RBF-DBN combines the qualities of both and based on 
this pattern, it appears that the proposed model holds significant 
potential for implementation in real-time cardiovascular health 
evaluations. This would provide medical professionals with a 
reliable tool that would lower the likelihood of both types of errors. 
When it comes to the F1 measure, which is an essential statistic in 
circumstances when maintaining balance is of the utmost 
importance, the RBF-DBN method delivers superior results in 
comparison to other methods that are currently utilized in the 
monitoring of cardiovascular patients. 
5.1. Discussion of Results 
Over the course of 1000 different time steps, the RBF-DBN 
approach that has been proposed is evaluated in comparison to 
three cardiovascular monitoring algorithms that are already in 
existence: Dual-Stage DL, DWT-ML, and M1M2. These findings 
offer compelling evidence regarding the efficiency of the algorithms 
in question. The RBF-DBN strategy that was recommended 
frequently outperformed methods that were state-of-the-art in 
terms of recall, accuracy, precision, and F1 measure. This technique 
has shown that it has the potential to become a cutting-edge tool for 
real-time monitoring of cardiovascular patients. 
A major improvement in terms of accuracy was demonstrated by 
the RBF-DBN approach, which produced a 99% accuracy rate. This 
contrasts with the Dual-Stage DL method, which achieved an 
accuracy rate of 97%. When it comes to accurately diagnosing 
cardiovascular events, the RBF-DBN outperforms its competitors, 
as evidenced by the fact that it has a 2% improvement in accuracy. 
Similarly, when the precision levels of the two methods were 
compared, it was evident that the RBF-DBN approach performed 
far better than the Dual-Stage DL strategy, which only managed to 
achieve 97% accuracy. A final precision of 99% was achieved. In 
situations where incorrect classifications have significant 
consequences, this demonstrates a 2% improvement in the model 
ability to avoid producing false positives. 
There was a discernible improvement in the recall performance of 
the RBF-DBN method when compared to the previously used 
strategies. RBF-DBN produced a recall rate of 99%, which is 
significantly higher than the 100% recall attained by the Dual-Stage 
DL technique. This may appear to be a minor decrease; nonetheless, 
it demonstrates that the RBF-DBN can identify a greater number of 
true positives while simultaneously creating a lower number of false 
negatives. Finally, the RBF-DBN approach, which is a compromise 
between recall and precision, consistently outperformed the control 
group on the F1 metric. This was the case throughout the whole 
study. A balanced approach to eliminating false positives and false 
negatives was demonstrated by the proposed method, which 
achieved a score of 99% F1 and surpassed the Dual-Stage DL 
method by its superior performance. 

As a result of these findings, it is possible that the discriminative 
capacity of the Deep Belief Network, when combined with the 
Radial Basis Function for feature extraction, could result in a model 
that is more sensitive, accurate, and precise in terms of detection 
and intervention in cardiovascular illnesses. 
 
6. Conclusion 
Through the utilization of the Radial Basis Function-Deep Belief 
Network (RBF-DBN) model, the research presents a fresh and 
cutting-edge way to cardiovascular patient monitoring. It has been 
demonstrated through extensive simulations and comparisons with 
other methods, such as Dual-Stage DL, DWT-ML, and M1M2, that 
the RBF-DBN method that has been recommended is superior to 
the other methods. One of the most important performance 
variables that the model continually improved was the F1 measure. 
Other important performance indicators included accuracy, 
precision, and recall. When compared to the Dual-Stage DL 
technique, the RBF-DBN method outperformed it in terms of 
accurately recognizing cardiovascular events. This was 
demonstrated by a 2% improvement in accuracy over the Dual-
Stage DL method. Further evidence of the model capacity to 
improve diagnostic accuracy and decrease the number of false 
positives was provided by the significant 2% increase in precision it 
accomplished. Although recall was significantly reduced, the RBF-
DBN strategy was able to discover a considerable fraction of 
genuine positive events. This was accomplished even though the 
approach had a high sensitivity. A further demonstration of the 
RBF-DBN effectiveness in real settings is provided by the fact that 
its 99% F1 measure illustrates its balanced performance capability. 
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