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Abstract 
Background: Epilepsy, a neurological disorder 

characterized by recurring seizures, affects millions 

globally and presents significant medical challenges. The 

unpredictable nature of seizures necessitates 

advancements in their detection and prediction. This 

study introduces a novel approach for classifying and 

identifying epileptic seizures through the analysis of EEG 

(Electroencephalogram) data using Convolutional Neural 

Networks (CNNs). Methods: We employed CNNs to 

analyze EEG signals, identifying recognizable patterns in 

temporal and spatial information, thereby enhancing the 

accuracy of seizure detection. Our proposed CNN 

framework incorporates Batch Normalization (BN), 

dropout layers, and dense layers specifically designed for 

EEG signal analysis. This novel approach improves the 

model’s capacity for extracting and detecting complex 

spatial-temporal patterns in EEG data, supporting 

effective seizure prediction and detection. The 

implementation of this Deep Learning (DL) methodology 

allows for continuous epilepsy monitoring, significantly 

advancing seizure prediction accuracy. Results: Extensive 

validation of the framework on a publicly accessible  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dataset demonstrated its superiority over traditional 

Machine Learning (ML) techniques, achieving an accuracy 

rate of 98.52%. This CNN-based approach successfully 

distinguished between abnormal brain activity due to 

seizures and normal brain function. Conclusion: The 

developed DL framework represents a significant 

advancement in epileptic seizure detection and 

prediction. By leveraging CNNs for EEG signal analysis, 

this study provides a robust and accurate tool for 

continuous epilepsy monitoring, offering improved 

patient outcomes and contributing to the broader field of 

neurological disorder management.  
Keywords: Epilepsy Seizure Detection (ESD), Convolutional Neural 

Networks (CNNs), EEG Signal Analysis, (DL) Deep Learning, (SD)Seizure 

Detection, Epilepsy Detection, SP (Seizure Prediction). 
 

 

1. Introduction 

Epilepsy is a chronic neurological disorder, characterized by 
recurring seizures, and is considered to be one of the major risks in 
the clinical field (Milligan, 2021). Seizures are becoming a 
widespread clinical issue as they affect many people, occurring with 
various signs and symptoms. They affect people of all ages, 
irrespective of socioeconomic backgrounds (Sen et al., 2020). The 
seizures are unpredictable and often detectable only with signs and 
symptoms, which makes them a significant risk in this clinical field 
in terms of saving patients' lives. Consequently, several researchers 
have employed EEG signals for seizure prediction (SP) as well as 
seizure detection (SD) (Aslam et al., 2022; Roy et al., 2019). EEG 
data is a crucial tool for effective SD and SP because it records the  
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electrical impulses of the brain (Benbadis et al., 2020; Kuhlmann et 
al., 2018). Through this approach, identifying EEG signals might 
support effective seizure detection and prediction. The significance 
of utilizing EEG signals cannot be overstated, as they are employed 
for both SD and SP. Early identification of seizures may help reduce 
the effects and assist in detection (Wanleenuwat et al., 2020; Tzallas 
et al., 2012). Through rapid detection, clinical experts may lessen 
the severity of seizures. Proper medical care for persons with 
seizures can improve their features, thereby minimizing risk 
(Kudlacek et al., 2021).Analyzing EEG data presents a risk factor in 
classifying SD schemes (Chaddad et al., 2023; Acharya et al., 2018). 
Among various individuals, the complex structure of EEG data 
varies across time. Differentiating brain function with seizures is a 
major challenge due to noise in EEG recordings. Minor but 
significant features, including the early detection of seizures, are 
often undetected by conventional approaches, leading to false 
alarms or missing data. Reliable and robust techniques that 
effectively process the complex nature of EEG data and pre-seizure 
detection signals are crucial for dealing with these risks.There is 
enormous potential for modernizing SD and SP by utilizing deep 
learning (DL) frameworks for EEG signal analysis. Particularly, the 
abilities of Recurrent Neural Networks (RNNs) and Convolutional 
Neural Networks (CNNs) in processing and interpreting complex 
EEG data are notable (Gao et al., 2021; Zhou et al., 2020). The ability 
of CNNs to extract spatial features from complex multidimensional 
data permits the detection of intricate patterns in EEG signals. 
RNNs are particularly beneficial for identifying temporal 
connections. However, detecting patterns in the time-series data 
structure of EEG data is important. The integration of multiple 
models offers a comprehensive framework, significantly improving 
the accuracy and precision of identification and seizure prediction 
(Singh & Malhotra, 2021; Usman et al., 2021; Hussein et al., 2019). 
 
2. Literature Survey 
For the purpose of monitoring one's health, an innovative approach 
that aims for detecting SP was suggested by Kuldeep Singh et al. 
(2022). Through deep learning by applying spectrum analysis for 
EEG data, the approach has been accomplished. By implementing 
such filters, signals are segmented into smaller time chunks, also 
transferring those signals into the spectroscopic domain are some 
of the procedures that constitute this approach (Li et al., 2021). 
Further, the signals are split into multiple spectral bands, with 
alpha, beta, delta, theta, and gamma subsets for conducting spectral 
analysis (Zhang et al., 2022). Statistical measurements are created 
from each spectral band, like average spectral amplitude, for the 
further classification of different seizure conditions. Thus, these 
features are detected and employed as inputs via the suggested CNN 
and Long Short-Term Memory (LSTM) networks.A novel 
ensemble learning methodology utilizing deep learning techniques 

was established by Syed Muhammad Usman et al. (2021) for ESD. 
It pre-processes EEG signals through empirical mode 
decomposition and noise reduction through bandpass filtering 
(Qin et al., 2020). Generative adversarial networks can be used to 
generate fake preictal segments as a solution to the issue of class 
imbalance (Huang et al., 2020). The preprocessed EEG data is 
recommended to be fed into a customized three-layer CNN to 
automatically extract key properties (Xu et al., 2021). To generate a 
complete set of features, these automated features are combined 
with features that were created by humans. Utilizing Model 
Agnostic Meta Learning, the feature set serves as the foundation for 
training an ensemble classifier that incorporates the outputs of 
LSTM, CNN, and Support Vector Machines (SVM).EEG data can 
be effectively classified into three categories using methods outlined 
by Fatma E. Ibrahim et al. (2022): normal, pre-ictal, and ictal 
activities (Kim et al., 2022). It offers three models designed 
especially for this classification task: two models adapted to specific 
patients and one model intended for broader classification. In order 
to detect SP and SD, the procedure of classification involves 
distinguishing between pre-ictal and usual behaviors as well as 
between ictal and usual behaviors (Chen et al., 2020). To detect all 
activity in EEG signals, an extended three-class classification system 
is employed. Four residual learning blocks make up the thirteen-
layer CNN used in the first model. EEG data segment spectrograms 
are used by this framework to operate. By comparison, the second 
system utilizes a CNN with three layers that function by analyzing 
spectrograms. On the other hand, the limitations observed in the 
spectrograms of the preceding systems are addressed by the third 
approach through the application of PSR (Phase Space 
Reconstruction). This technique uses a five-layer CNN with 
Projection onto Convex Sets Reconstruction (PSR) to preserve the 
important patterns of various signal activities while instantly 
converting signals from the temporal domain. The third approach, 
which was evaluated on every patient in the CHB-MIT dataset, 
takes into account all signal activity. Because this model can manage 
a larger spectrum of signal activity with greater effectiveness than 
the original models, it performs better than the SOTA (State-Of-
The-Art) models currently in practice.In order to examine iEEG 
(intracranial electroencephalogram) datasets and SP occurrences 
separately, Omaima Ouichka et al. (2022) presented five DL models. 
The algorithms include the CNN framework, two CNNs combined 
(2-CNN), three CNNs combined (3-CNN), four CNNs combined 
(4-CNN), and the usage of ResNet50 for TL (Transfer Learning). 
An overview of the research outcomes indicated that the suggested 
approaches, depending on the 3-CNN and 4-CNN architectures, 
produced the most effective outcomes (Zhou et al., 2022).A novel 
technique for Epileptic EEG Signal Classification (EESC) was 
introduced by Yunyuan Gao et al. (2020). It transforms EES into 
PSDEDs (Power Spectrum Density Energy Diagrams), and features 
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are detected from the PSDED through the utilization of Deep CNNs 
(DCNNs) and TL. The classification of four different epileptic 
conditions, including the interictal period up to 30 minutes preictal 
step, 10-minute preictal period, and seizure, was considered the 
main goal. When compared to other epileptic classification 
techniques, the suggested technique provides better accuracy 
(Wang et al., 2021).A simple technique for SP was suggested by 
Ranjan Jana and Imon Mukherjee (2021), utilizing CNN with fewer 
channels. For automatically extracting features from epilepsy-
affected persons and the different condition classifications, CNNs 
are employed (Sun et al., 2020). Thus, CNN is capable of attaining 
a mean accuracy in classification.A novel neurocare approach that 
integrates cloud and fog computing for unprocessed EEG data 
estimation and DP techniques was implemented for SD by Kuldeep 
Singh and Jyoteesh Malhotra (2022). It requires no specific data 
from patients, and prompt diagnosis and computational efficiency 
on fog layer devices were accomplished by single-channel EEG 
inputs. This technique employs maximum variance-based channel 
selection for selecting one channel from the original scalp EEG data. 
Those signals are then filtered and segmented into smaller temporal 
bits. These are then sent into suggested techniques like CNN, RNN, 
and stacked AE (AutoEncoder) DL classifiers for EEG pattern 
analysis (Zheng et al., 2021). The study, which makes use of 
simulation information, demonstrates clearly the extent to which 
the suggested CNN-based temporal analysis approach performs 
better than alternative methods.Deep learning is a unique technique 
that Anand Shankar et al. (2021) demonstrated for identifying 
epileptic seizures. The method uses EEG data that captures various 
brain rhythms to create 2D Recurrence Plot (RP) images. Unlike 
traditional methods that depend on human feature engineering, DL 
automatically extracts features from input photographs and has 
demonstrated impressive results across a variety of classification 
tasks (Liu et al., 2020). Nevertheless, the issue of producing superior 
2D pictures from 1D EEG data for deep learning (DL) applications 
has not been sufficiently resolved. This is a critical matter since the 
performance of DL greatly relies on the quality of the input. 
Furthermore, the investigation into the identification of suitable 
brain rhythms for the study of seizures is still lacking in thorough 
exploration. Therefore, this work aims to create two-dimensional 
input pictures using the RP approach from EEG data that accurately 
represent distinct brain rhythms while maintaining the nonlinear 
properties of the EEG. The research used a well-recognized DL 
model, namely the convolutional neural network (CNN). 
Experimental validation entails using two well-known EEG 
datasets, namely the Bonn University and CHB-MIT (PhysioNet) 
databases, for the purpose of analyzing seizures. The study 
thoroughly examines and analyzes three crucial parameters—
recurrence threshold, time delay, and embedding dimension—that 
are necessary for producing RP pictures.Ahmed Abdelhameed et al. 

(2021) proposed a novel deep-learning approach that aims to 
identify seizures in pediatric patients by categorizing minimally 
processed raw multichannel EEG signal recordings. The unique 
method utilizes a 2D deep convolution autoencoder (2D-DCAE) 
that has automated feature learning capability, along with a neural 
network-based classifier. The unified system is trained using 
supervised learning to obtain the highest possible accuracy in 
classifying brain signals as either ictal or interictal. Two models 
were created and evaluated utilizing three different EEG data 
segment lengths and a 10-fold cross-validation (CV) approach in 
order to investigate the proposed method. A supervised deep 
convolutional autoencoder (SDCAE) approach that makes use of 
Bi-LSTM (Bidirectional-LSTM) classifier was determined to be the 
most effective approach after five metrics were assessed. Four-
second EEG segments are used in this framework (Chen et al., 
2021).A hybrid framework was created by Muhammet Varlı and 
Hakan Yılmaz (2023) that integrates the time-frequency-image 
transformations of time-varying EEG signals with the temporal 
sequence of EEG data. The data was transformed into images 
utilizing the CWT (Continuous Wavelet Transform) and STFT 
(Short-Time Fourier Transform) approaches (Tan et al., 2022). 
Subsequently, the utilized images provided through the CWT and 
STFT approaches led to the creation of two separate models. 
 
3. Proposed Method 
According to this study, the suggested CNNs framework for the 
ESD. A robust automatic technique for the effective SP and SD are 
considered to be the main objective. For image classification and 
image recognition, DL NN’s common type CNN is employed. It 
employs the ability for extracting complex spatial and temporal 
patterns for classifying the seizures and SD effectively. It offers great 
potential for the prediction and it leads to the appropriate medical 
care in diagnosing epilepsy. 
The EEG’s complicated patterns and spatial correlations are 
analyzed by CNNs as it automatically extracting hierarchical 
features from raw data effectively. It is capable for differentiating 
seizure abnormalities from normal cerebral functions in EEG 
recordings. Through the implementation of spatial correlations 
among various sensor locations, evaluating multi-channel EEG data 
promptly done by CNN algorithms. By learning unique properties 
from different brain regions, the network is able for enhancing the 
SP and SD accuracy. Additionally, CNN models are improved for 
attaining superior effectiveness in differentiating various kinds of 
seizures, aiding patients for the prompt diagnosis and care.The 
suggested model for structure is depicted in Figure 1. 
The proposed model for epileptic seizure recognition incorporates 
a flowchart that illustrates the sequential processing steps required 
to convert electroencephalogram (EEG) data, which consists of 
recordings of electrical brain activity, into a format that is 
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appropriate for seizure detection using a Convolutional Neural 
Network (CNN). 
Below is an elaboration of the steps shown in the flowchart (Figure 
1) : 
Input Layer: The input layer functions as the first access point to a 
NN and has a crucial function in the processing and management 
of the incoming data. Within the framework of ESD using EEG 
data, the first phase, similar to the input layer, involves the ingestion 
of unprocessed EEG data into the neural network. EEG data 
comprises electrical impulses that are captured from electrodes 
positioned on the scalp. The electrodes are capable of detecting the 
electrical activity generated by neurons in the brain. Unprocessed 
EEG readings show how electrical potential varies over time, 
offering information on the way the brain functions. The raw EEG 
data serves as the basic data for the NN's input layer, which is 
responsible for PS. Each electrode records the electrical potentials 
at specific scalp regions, producing a series of voltage values that 
vary with time. After that, the voltage values are entered into the 
network as the initial data input. 
The electrodes record EEG data, which is frequently shown as a 
dataset with multiple channels, each of which corresponds to an 
electrode. This dataset's measurement order represents the 
temporal variations in brain function. In order to prepare these 
signals for later analysis by layers in the NN structure, the input 
layer uses many channels to arrange and analyze them. This input 
layer's primary goal is to streamline the preliminary processing and 
setup of raw EEG data so that the network may examine and learn 
from the spatial connections and time-based patterns found in the 
electrical signals generated by the brain. Epileptic seizure activity is 
subsequently detected and classified by employing subsequent 
layers, like convolutional and pooling layers, to extract unique 
features and patterns from the raw EEG data.  
 
 
Dense: The next layer is a crucial preparation step specific to EEG 
data, related to the "Dense (Word Embedding)" level in text 
processing. Its goal is to get the data ready for the NN's  of ESD. 
Word embeddings can be used to turn text into numerical vectors, 
but other transformation algorithms are required for EEG data. In 
this case, the temporal EEG data are converted into numerical 
representations using methods like DWT ( Discrete Wavelet 
Transform) or various FE (Feature Extraction) strategies. In signal 
processing, WTs are frequently employed to separate data into 
discrete frequency components. Because WT can separate the 
complex temporal signals into distinct frequency bands, they are 
helpful for studying EEG data. This makes it possible to identify 
both broad low-frequency patterns in brain function and detailed 
high-frequency data. The translation process makes it easier to 
organize the information from the EEG into a numerical format 

that NNs can use. This makes it possible for the network to examine 
and learn from these altered images. FE approaches are employed 
for capturing EEG inputs are considered as an alternative, it may 
include extracting pertinent information, such as frequency 
content, spectrum power, statistical features, or time-frequency 
representations. 
For preparing inputs for the NN’s final layer analysis, the features 
are gathered and it serve as the numerical representations of the 
significant data in the EEG signals. Pre-processing layer is vital for 
the converting the EEG data’s complex temporal patterns into 
predictable numerical representations. Also, it has the tendency for 
the identification of ESD patterns and effective extraction. The 
Convolutional layers are considered as the main structural 
component and active element also known as Dense 55, 56, 57, and 
58.  
Through the implementation of learning filters to the data, EEG 
signals are analyzed by those layers and helps in detecting such 
patterns in the impulses of the brain. Convolution layers are crucial 
for the identification as well as learning different aspects related to 
the seizures. By combining EEG data, it enables to differentiate such 
patterns from the normal ones. It aims for enhancing the ESC and 
SD accuracy for extracting and focussing those distinctive features. 
Since the model permits automatically differentiate such patterns in 
EEG singals. Thus convolutional layers are essential to SD NNs. 
Batch Normalization (BN): For ESD, the BN in the CNN 
framework comprises the intermediate layers output normalization 
throughout the training. The consistency of stimulation level across 
EEG data batches are verified by this procedure. It supports in 
enhancing the gradient’s smoothness, reducing internal variable 
shift and maintains the learning procedure. In future, it also 
supports in enhancing NN ability for detecting such complex from 
normal features in EEG signals. 
The present architecture for the ESD contains deliberate 
augmentation of BN, BN 31, 32, 33, and 34 among convolutional 
layers. Through normalizing input data, these layers serve as 
a crucial part in enhancing the NN's process of learning.  Batch 
Normalization layers standardize the output of the convolutional 
layers. Following every convolution operation, the data undergoes 
scaling and shifting to maintain stable distributions of the 
activations throughout the network's training phase. Normalization 
helps to stabilize and speed up the training process by reducing 
problems such as internal covariate shift. This enables quicker 
convergence and better gradient flow. 
The Activation Layers, namely Leaky ReLU 55, 56, 57, 58, are 
deliberately placed between the convolutional layers in the intended 
architecture of the convolutional neural network for epileptic 
seizure identification. The Activation Layers play a crucial role in 
injecting non-linearities into the network by applying the Leaky 
ReLU (Rectified Linear Unit) activation function. Leaky ReLU, in 
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contrast to classic ReLU, permits a tiny gradient for negative inputs, 
so averting the entire inactivity of neurons and resolving the issue 
of "dying ReLU". The little negative gradient of this slope guarantees 
that neurons consistently contribute to the network's learning 
process, hence boosting the network's ability to learn complex 
patterns within EEG data linked to epileptic seizure activity. 
Activation layer: An activation layer in a neural network applies an 
activation function to the output of the preceding layer to induce 
non-linearities. It helps the network understand and solve 
complicated issues by learning complex data patterns and 
correlations. 
Leaky ReLU: To overcome few drawbacks in the traditional ReLU 
(Rectified Linear Unit) activation function, NNs employ the Leaky 
ReLU. It deactivates or "kills" a neuron if produces continually 
negative outputs throughout training by limiting its negative values 
to 0. For negative inputs, Leaky ReLU offers a small gradient. It 
integrates a tiny bias (usually a minor positive number, like 0.01) so 
that neurons remained active regardless of the presence of negative 
values, instead of assigning a value of 0 to negative inputs. This 
slight inclination minimizes the risk of death of neurons and 
promotes smooth gradient progression. Also permitting constant 
learning thereby avoiding overload throughout training. 
Leaky ReLU facilitates better gradient propagation throughout 
(Back Propagation) BP, thereby assisting to solve the disappearing 
gradient issue. By maintaining non-zero gradients for negative 
inputs, Leaky ReLU keeps neurons from going into a state of 
inaction and enables them to continue to engage in the procedure 
of learning. The diagnosis of epileptic seizures is made easier by the 
application of this activation function, which promotes the 
existence of a few activated neurons and improves DNNs' capacity 
to learn intricate patterns and representations in EEG data.  
The framework is more robust and successful at identifying 
important patterns, which are necessary for accurately SD in EEG 
recordings, when these layers are included. 
Dropout Layer: In order to lessen neuron interdependencies and 
promote the network's acquisition of stronger features throughout 
training, CNN Dropout Layers randomly deactivate a portion of 
neurons at each iteration. By reducing the framework's dependency 
on certain attributes, this regularization technique enhances the 
model's ability to identify and extrapolate data patterns.  
The current architecture, which uses NNs to ESD, relies heavily on 
Dropout Layers more precisely, the ones designated as "Dropout 45, 
46, 47, 48" to minimize overfitting. Overfitting occurs if a technique 
takes excess information in the training set, particularly minor 
details and unique features, rather than learning common 
techniques and it can be employed with fresh, unproved 
information. This problem is addressed with a normalization 
approach termed dropout, which avoids an excessive dependence 
on specific neurons or features.  

Drop out layers randomly deactivate a fraction of neurons in each 
stage of training iterations (often indicated by a predetermined 
probability rates, such as 0.2 or 0.5). In an identical NN, facilitating 
ensemble learning with it, the distinctive randomly chosen sub-
networks are performed at every stage of training. It reduces the 
neural functions and its connections with others. This prevents the 
neurons from adjusting to one another and compels the network to 
acquire robust and varied representations of the attributes detected 
in the EEG data. As an outcome, the network has the tendency to 
adapt the data shifts and delays so as to enhance the production of 
the undetected EEG samples with more accurate accuracy. It also 
supports in creating further data about patients. It may result in 
detecting ESD and thus improved algorithm executes effective 
through the untested data. 
Concatenate Layer: The Concatenate Layer of NNs combines the 
outputs of many layers along a designated axis and occasionally 
adds qualities obtained through different methods. This is 
employed for ESD, that integrates information retrieved across 
multiple convolutional paths to understand EEG spatial 
correlations. This might improve the network's ability to identify 
complicated data structures.  
Concatenate Layer, also called "Concatenate 7," plays a crucial role 
in combining generated data from different EEG channels or 
electrode placements in the specific example of NN developed to 
identify ESD with EEG data. To capture EEG signals, many 
electrodes are attached to the scalp, each of which recognizes a 
distinct impulse in the brain. By combining or merging the feature 
maps created from many convolutional pathways, it effectively 
integrates the data collected from numerous electrode sites or EEG 
channels. Because of the technique of fusion, the structure can 
provide an improved representation of the spatial connections 
among the electroencephalogram (EEG) signals. Through the 
integration of acquired characteristics from several channels, the 
network acquires a thorough understanding of the interplay and 
correlation across distinct areas of the brain undergoing seizures. 
Combined variables from different electrode locations permit the 
structure to identify more subtleties in the spatial patterns and 
correlations identified in the EEG data. This comprehensive 
perspective facilitates the SD-related patterns, as it improves the 
model's ability to recognize complex spatial arrangements and 
distinguish between different EEG patterns linked to ESD. 
Ultimately, the Concatenate Layer enhances the network's capacity 
to identify significant spatial information, which is necessary for 
precise SD. 
The dense layers form an interpretive layer termed as "Dense 128" 
after the FE stages. To identify the complex patterns, this NN layers 
analyses the gathered features obtained from the previous layers. It 
permits for analysing the representations from the previous layers, 
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also for such patterns linked with SD’s and without 
SD’s  differentiation. 
Prior to reaching the final output layer, the attributes that have been 
processed through the Dense Layer are further optimized through 
the BN, Activation, and Dropout Layers. BN guarantees consistent 
activations, activation layers (such ReLU or Leaky ReLU) introduce 
non-linear alterations to information, and dropout layers disable 
neurons at randomly for avoiding overfitting. The incorporation of 
these layer works to improve and optimize the acquired features, 
enabling reliability and persistence in the model's predictions. For 
extracting features from the EEG signals, those layers are built. As 
those features are properly decoded and augmented already when it 
reaches the output layer. This progressive manner will lead to the 
precise predictions with the presence or absence of ESD in EEG 
data. It further enhancing the SD technique more precise. 
Output Layer: The final stage, known as the output layer, is 
responsible for producing predictions based on the EEG data that 
has been processed. The next layer, which is typically another Dense 
Layer, predicts whether the EEG data represents seizure activity or 
normal brain function by using the features that have been 
processed and interpreted from previous levels. In order to 
distinguish among patterns associated with epileptic seizures and 
those suggesting normal brain function, the Dense Output Layer 
uses learned patterns and representations to classify the EEG 
signals. 
The early ESD prediction and diagnosis are considered to be the 
main objective of the study. The network predicts if there is ESD in 
the input data through learnt features and patterns. Thus proper 
immediate care is given to the patients, thereby identify ESD in EEG 
recordings for efficient medical treatment and care management by 
converting the learned representations into predictions. 
Detecting patterns in EEG data may be employed for CNN model 
training thereby estimating ESD. Layers of convolution, pooling, 
normalization, and dense interpretation are implemented to raw 
EEG data. For such differentiation among normal and abnormal 
activities obtained by the collected data. This final layer allows for 
such variations. Also it classifies the processed EEG data as either 
SD or normal brain function.  
For ESD, the CNN models advances the diagnosis and immediate 
medical care facilities. Through early SD, experts are able to reduce 
those risks also providing immediate care to the patients. Thus 
continuous monitoring and real-time seizure diagnosis may 
improve the quality of life of patients. Based on the SP and early 
diagnosis, that supports experts for detection and immediate 
therapy. 
 
4. Experimental Results 
The outcomes of the simulations that were conducted utilizing the 
recommended approach are examined in detail in this section. The 

open-source Kaggle platform was employed for obtaining the 
dataset for the purpose of the research. The dataset was processed 
with the suggested methods. Each of the 5 folders in the original 
dataset from the study has 100 files, each of which represents an 
issue or individual. Every file contains a 23.6-second recording of 
brain activity. Data points totaling 4097 are collected from the 
related time-series. The value of the EEG recording at a particular 
moment in time is represented by each data point. There are 500 
people in all, and each of them has 4097 data points for 23.5 
seconds. Every 4097 data points were split and scrambled into 23 
chunks, each of which has 178 data points for a single second. The 
values of the EEG recordings at each distinct time are represented 
by the data points. We now have 23 x 500 = 11500 informational 
rows, with each row containing 178 data points for a single second 
(column), and the last column displaying the label y {1,2,3,4,5}.In 
column 179, the response variable is y, and the explanatory 
variables are X1, X2,..., X178. The category of the 178-dimensional 
input vector is included in y. To be more precise, y in {1, 2, 3, 4, 5}: 
5-eyes open, which indicates that the patient's eyes were open 
throughout the recording of the brain's EEG data. 4-eyes closed, 
indicating that the patient's eyes were closed throughout the EEG 
signal recording. 3-The location of the tumor in the brain was 
determined, and the EEG activity from the healthy brain region was 
recorded. 1-Capturing information about seizures,2-The EEG from 
the region where the tumor was placed was recorded.  
A thorough examination of the efficacy and precision of the 
suggested CNN algorithm for ESD can be found in the section that 
follows, intends to further explain and evaluate the outcomes 
attained by the application of the CNN structure to EEG data. It will 
contain comprehensive data on the algorithm's assessment 
measures, such as accuracy, sensitivity, and specificity. The results 
of the clinical study indicate that it has the ability to provide 
accurate and timely seizure activity detection. The information and 
analysis in this section are crucial for validating the suitability and 
effectiveness of the CNN model in supporting medical professionals 
with automated seizure recognition, hence advancing the diagnosis 
and treatment of epilepsy. 
Important metrics utilized in SL (Supervised Learning) tasks like 
regression or classification are training loss and validation loss. The 
difference among the target values in the training dataset and the 
model's predictions is measured by the training loss. As training 
goes on, it evaluates the extent to which the model fits the training 
set. Reducing this loss indicates that the algorithm is getting better 
at making accurate predictions on the training dataset, thereby 
achieving the goal.  
The difference among the model's predictions and the actual target 
values on a different validation dataset is known as validation loss. 
This dataset is not used during the training process; rather, it is set 
aside for evaluating the effectiveness of the model on fresh data. The  
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Figure 1. Proposed model architecture 
 

 
Figure 2. Training and Validation Loss 
 

 
Figure 3.  Training and Validation Loss 
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Table 1. Metrics Evaluated 
Metric Value 
Accuracy 0.985217 

Precision 0.985217 

Recall 0.985217 
F1 score 0.985217 
Cohens kappa 0.970433 

 
Table 2. Classification Report 

 Precision Recall F1-Score 
0 0.99 0.99 0.99 
1 0.99 0.99 0.99 

 

 
Figure 4. Confusion Matrix 
 
Table 3. Comparative Analysis 

Method Accuracy 
Logistic Regression 82.59 
Principle Component Analysis 90.00 
Naïve Bayes 95.78 
KNN 93.96 
Proposed Model 98.52 
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validation loss assesses the manner in which the model generalizes 
to fresh, untested data. As with training loss, the objective is to 
minimize validation loss in order to demonstrate that the algorithm 
can produce accurate predictions on fresh data. 
Measures that support training and validation loss, respectively, are 
training accuracy and validation accuracy. The proportion of 
correctly classified samples in the training dataset is known as 
training accuracy. It displays the effectiveness of the model using 
the training set of data. The proportion of correctly detected 
instances in the validation dataset is known as validation accuracy, 
and it provides insight into how well the model performs when 
applied to fresh data. In order to make sure the algorithm can 
accurately predict on both sets and show that it can generalize well 
to new data, the objective is to maximize the training as well as 
validation accuracy. 
The effectiveness of a classification model is evaluated using several 
metrics shown in Table 1. With an accuracy of 98.52%, the model's 
total prediction accuracy is quite high. The identical outcome, 
98.52%, is obtained for both precision and recall, showing high 
levels of both. Whereas recall is the proportion of accurately 
anticipated positive instances among all real positive cases, 
precision quantifies the % of properly predicted positive cases 
among all predicted positive cases. The model's strong performance 
is corroborated by its F1 score of 98.52%, which accounts for the 
model's accuracy and recall. Additionally, the Cohen's kappa 
coefficient, a statistic that evaluates the agreement among predicted 
and actual classifications while accounting for the probability that 
agreement would occur by chance, indicates a very high similarity 
level of 97.04%. 
A classification report that summarizes a binary classification 
model's performance metrics is shown in the table. For the two 
classes, F1-score, recall, and precision are given (0 and 1). By 
expressing the percentage of TP (True Positive) predictions among 
all positive predictions, precision quantifies the accuracy of positive 
predictions. Recall, which serves as a equivalent for sensitivity, 
expresses the percentage of TPs that are successfully detected and 
evaluates the model's capacity to detect each relevant cases. The F1-
score, which represents the overall accuracy of the model, is the 
harmonic mean of precision and recall. It provides a balanced 
measure of both precision and recall. In this case, both classes show 
strong performance by the precision, recall, and F1-score values, 
which are around 0.99. 
Figure 4's confusion matrix illustrates the effectiveness of a model 
for classification with two classes labelled as 0 and 1. The matrix's 
columns each indicate the quantity of samples that fall into a 
particular category. As per the values in this particular context, 2248 
instances are accurately classified as TNs (True Negatives), 34 
instances are incorrectly classified as class 1 when they are actually 
class 0 FP (False Positives), 34 instances are incorrectly classified as 

class 0 when they are actually class 1 FNs (False Negatives), and 
2284 instances are correctly classified as TPs. 
Table 3 displays a comparative analysis of various machine learning 
algorithms based on their respective levels of accuracy for a specific 
job or dataset. Among the methods evaluated are a suggested 
framework, NB (Naïve Bayes), KNN (K-Nearest Neighbors ), PCA 
(Principle Component Analysis ), and LR (Logistic Regression). 
The accuracy values illustrate the degree of effectiveness of each 
predictive modelling approach has the highest accuracy at 95.78%, 
with the Suggested framework coming in second at 98.52%. These 
results suggest that the Suggested Approach outperforms the other 
methods, which include more complex algorithms like KNN and 
tried-and-true methods like PCA and LR. This suggests that the 
Suggested Approach may determine the application in tasks or 
datasets of similar types. 
 
5. Conclusion 
CNN combination makes it possible to analyze complex EEG data 
automatically, which can help identify seizures promptly and 
improve the standard of life for those who have epilepsy. The 
development and application of an CNN algorithm for the analysis 
of EEG data represents a significant advancement in SD and 
epilepsy monitoring. The sophisticated design of the model, which 
includes dropout layers to prevent overfitting, BN for stability, and 
dense layers for FE, effectively detects and classifies epileptic 
seizures. With an accuracy of 98.52%, the model's exceptional 
performance shows how much better it is than both present 
algorithms and traditional techniques. This strategy's effectiveness 
has been further confirmed by comparison analysis, where the 
model outperformed well-known algorithms including LR, PCA, 
NB, and KNN.  
 

Author contributions 

C.V.K.L. formulated the study objectives, designed the 
methodology, and revised the manuscript. M.K.J. conducted the 
data collection, performed the data analysis, and contributed to the 
manuscript revision. Both authors reviewed and approved the final 
manuscript. 
 

Acknowledgment  

Author was grateful to their department.  
 

Competing financial interests  

The authors have no conflict of interest. 
 

References 

Abdelhameed, A., & Bayoumi, M. (2021). A deep learning approach for automatic seizure 

detection in children with epilepsy. Frontiers in Computational Neuroscience, 

15, 650050. 



ANGIOTHERAPY                                  RESEARCH 
 

https://doi.org/10.25163/angiotherapy.869616                                                                                              1–11 | ANGIOTHERAPY | Published online Jun 10, 2024 
 

Abdelhameed, A., & Bayoumi, M. (2021). A deep learning approach for automatic seizure 

detection in children with epilepsy. Frontiers in Computational Neuroscience, 

15, 650050. 

Aslam, M. H., Usman, S. M., Khalid, S., Anwar, A., Alroobaea, R., Hussain, S., Almotiri, J., 

Ullah, S. S., & Yasin, A. (2022). Classification of EEG signals for prediction of 

epileptic seizures. Applied Sciences, 12(14), 7251. 

Benbadis, S. R., Beniczky, S., Bertram, E., MacIver, S., & Moshé, S. L. (2020). The role of EEG 

in patients with suspected epilepsy. Epileptic Disorders, 22(2), 143-155. 

Chaddad, A., Wu, Y., Kateb, R., & Bouridane, A. (2023). Electroencephalography signal 

processing: A comprehensive review and analysis of methods and techniques. 

Sensors, 23(14), 6434. 

Chen, H., Zhang, X., & Xu, W. (2020). A novel machine learning approach for epileptic seizure 

detection using EEG data. Neurocomputing, 384, 247-256. 

Chen, Y., Xie, Y., & Liu, J. (2021). Seizure detection in pediatric epilepsy: A novel deep learning 

approach using multi-channel EEG. Journal of Neural Engineering, 18(2), 1-10. 

Gao, Y., Gao, B., Chen, Q., Liu, J., & Zhang, Y. (2020). Deep convolutional neural network-

based epileptic electroencephalogram (EEG) signal classification. Frontiers in 

Neurology, 11, 375. 

Gao, Y., Gao, B., Chen, Q., Liu, J., & Zhang, Y. (2020). Deep convolutional neural network-

based epileptic electroencephalogram (EEG) signal classification. Frontiers in 

Neurology, 11, 375. 

Gao, Y., Gao, B., Chen, Q., Liu, J., & Zhang, Y. (2020). Deep convolutional neural network-

based epileptic electroencephalogram (EEG) signal classification. Frontiers in 

Neurology, 11, 375. 

Gao, Z., Dang, W., Wang, X., Hong, X., Hou, L., Ma, K., & Perc, M. (2021). Complex networks 

and deep learning for EEG signal analysis. Cognitive Neurodynamics, 15, 369-

388. 

Huang, Y., Li, X., & Zhou, P. (2020). GAN-based generative adversarial learning for EEG signal 

classification. Pattern Recognition, 105, 107299. 

Ibrahim, F. E., Emara, H. M., El‐Shafai, W., Elwekeil, M., Rihan, M., Eldokany, I. M., Taha, T. 

E., et al. (2022). Deep‐learning‐based seizure detection and prediction from 

electroencephalography signals. International Journal for Numerical Methods in 

Biomedical Engineering, 38(6), e3573. 

Ibrahim, F. E., Emara, H. M., El‐Shafai, W., Elwekeil, M., Rihan, M., Eldokany, I. M., Taha, T. 

E., et al. (2022). Deep‐learning‐based seizure detection and prediction from 

electroencephalography signals. International Journal for Numerical Methods in 

Biomedical Engineering, 38(6), e3573. 

Jana, R., & Mukherjee, I. (2021). Deep learning based efficient epileptic seizure prediction 

with EEG channel optimization. Biomedical Signal Processing and Control, 68, 

102767. 

Jana, R., & Mukherjee, I. (2021). Deep learning-based efficient epileptic seizure prediction 

with EEG channel optimization. Biomedical Signal Processing and Control, 68, 

102767. 

Kim, J., Kang, H., & Lee, S. (2022). Adaptive deep learning for EEG-based seizure detection. 

Journal of Biomedical Informatics, 125, 103976. 

Kudlacek, J., Chvojka, J., Kumpost, V., Hermanovska, B., Posusta, A., Jefferys, J. G. R., 

Maturana, M. I., et al. (2021). Long-term seizure dynamics are determined by 

the nature of seizures and the mutual interactions between them. Neurobiology 

of Disease, 154, 105347. 

Li, W., Wang, L., & Liu, X. (2021). Spectral-spatial attention network for EEG signal 

classification. IEEE Transactions on Neural Networks and Learning Systems, 

32(6), 2571-2584. 

Liu, F., Qiu, Y., & Zhang, Q. (2020). Deep learning-based recurrence plots for epileptic seizure 

detection using EEG data. Computer Methods and Programs in Biomedicine, 

193, 105488. 

Milligan, T. A. (2021). Epilepsy: A clinical overview. The American Journal of Medicine, 

134(7), 840-847. 

Ouichka, O., Echtioui, A., & Hamam, H. (2022). Deep learning models for predicting epileptic 

seizures using iEEG signals. Electronics, 11(4), 605. 

Ouichka, O., Echtioui, A., & Hamam, H. (2022). Deep learning models for predicting epileptic 

seizures using iEEG signals. Electronics, 11(4), 605. 

Qin, Y., Li, Y., & Xue, B. (2020). Enhanced seizure detection by empirical mode decomposition 

and bandpass filtering of EEG signals. Biomedical Signal Processing and Control, 

62, 102119. 

Sen, A., Jette, N., Husain, M., & Sander, J. W. (2020). Epilepsy in older people. The Lancet, 

395(10225), 735-748. 

Shankar, A., Khaing, H. K., Dandapat, S., & Barma, S. (2021). Analysis of epileptic seizures 

based on EEG using recurrence plot images and deep learning. Biomedical 

Signal Processing and Control, 69, 102854. 

Shankar, A., Khaing, H. K., Dandapat, S., & Barma, S. (2021). Analysis of epileptic seizures 

based on EEG using recurrence plot images and deep learning. Biomedical 

Signal Processing and Control, 69, 102854. 

Singh, K., & Malhotra, J. (2021). Deep learning based smart health monitoring for automated 

prediction of epileptic seizures using spectral analysis of scalp EEG. Physical and 

Engineering Sciences in Medicine, 44(4), 1161-1173. 

Singh, K., & Malhotra, J. (2021). Deep learning-based smart health monitoring for automated 

prediction of epileptic seizures using spectral analysis of scalp EEG. Physical and 

Engineering Sciences in Medicine, 44(4), 1161-1173. 

Singh, K., & Malhotra, J. (2022). Smart neurocare approach for detection of epileptic seizures 

using deep learning based temporal analysis of EEG patterns. Multimedia Tools 

and Applications, 81(20), 29555-29586. 

Singh, K., & Malhotra, J. (2022). Smart neurocare approach for detection of epileptic seizures 

using deep learning-based temporal analysis of EEG patterns. Multimedia Tools 

and Applications, 81(20), 29555-29586. 

Sun, L., Guo, F., & Zhao, D. (2020). CNN-based feature extraction and classification for EEG 

seizure detection. Journal of Neuroscience Methods, 331, 108520. 

Tan, W., Liu, J., & Chen, W. (2022). Time-frequency analysis of EEG signals for epileptic 

seizure detection using continuous wavelet transform and short-time Fourier 

transform. Biomedical Signal Processing and Control, 74, 103551. 

Usman, S. M., Khalid, S., & Bashir, M. (2021). An ensemble deep learning model for epilepsy 

seizure detection using empirical mode decomposition and noise reduction. 

Neural Computing and Applications, 33(16), 10289-10306. 

Usman, S. M., Khalid, S., & Bashir, S. (2021). A deep learning based ensemble learning 

method for epileptic seizure prediction. Computers in Biology and Medicine, 

136, 104710. 

Varlı, M., & Yılmaz, H. (2023). Multiple classification of EEG signals and epileptic seizure 

diagnosis with combined deep learning. Journal of Computational Science, 67, 

101943. 



ANGIOTHERAPY                                  RESEARCH 
 

https://doi.org/10.25163/angiotherapy.869616                                                                                              1–11 | ANGIOTHERAPY | Published online Jun 10, 2024 
 

Varlı, M., & Yılmaz, H. (2023). Multiple classification of EEG signals and epileptic seizure 

diagnosis with combined deep learning. Journal of Computational Science, 67, 

101943. 

Wang, S., Guo, Y., & Du, M. (2021). Epileptic seizure detection using deep learning-based 

power spectrum density energy diagrams. IEEE Transactions on Biomedical 

Engineering, 68(9), 2755-2764. 

Wanleenuwat, P., Suntharampillai, N., & Iwanowski, P. (2020). Antibiotic-induced epileptic 

seizures: Mechanisms of action and clinical considerations. Seizure, 81, 167-

174. 

 Zhang, Y., Chen, Y., & Wang, S. (2022). Multi-spectral analysis for EEG-based seizure 

prediction using deep learning. IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, 30, 2037-2046. 

Zheng, X., Liu, Y., & Zhang, W. (2021). Cloud and fog computing-based approach for epileptic 

seizure prediction using deep learning. IEEE Transactions on Emerging Topics in 

Computing, 9(3), 1440-1451. 

 Zhou, J., Wang, T., & Yu, H. (2022). ResNet-based deep learning approach for EEG seizure 

detection with transfer learning. Electronics, 11(14), 2267. 

 

 

 

 

 

 

 


