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Abstract 
Background: Maize (Zea mays) and its derived products 

are critical transgenic crops, widely consumed globally. In 

2022/2023, maize consumption reached approximately 

45,882 million bushels worldwide and 646 million bushels 

in Egypt, making it a significant dietary staple alongside 

wheat and rice. This study evaluates heavy metal 

concentrations in maize and its products, estimating the 

element concentration factor (mg/kg) and assessing 

potential health risks due to toxic heavy metals. Methods: 

Lead (Pb), cadmium (Cd), and chromium (Cr), along with 

non-toxic elements including iron (Fe), manganese (Mn), 

nickel (Ni), zinc (Zn), copper (Cu), cobalt (Co), and tin (Sn), 

were analyzed using inductively coupled plasma mass 

spectrometry (ICP-MS) following high-performance 

microwave digestion. The estimated provisional weekly 

intake (EPTWI) was compared to the accepted provisional 

weekly intake (APTWI) set by the FAO/WHO and JECFA. 

Results: The study revealed that Fe had the highest 

concentration (73.39 mg/kg) and As the lowest (0.03 

mg/kg) in white corn samples. White corn flour showed 

the highest concentration of Fe (40.233 mg/kg) and the 

lowest of Pb (0.185 mg/kg). Yellow corn contained the 

highest Fe concentration (47.27 mg/kg) and the lowest Pb  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0.915 mg/kg), while yellow corn flour had the highest Fe 

concentration (89.77 mg/kg) and the lowest Sb (0.03 

mg/kg). The weekly intakes of essential elements (Cu, Fe,  

Mn, and Zn) and toxic elements (As, Cd, Sn, Sb, and Pb) 

were significantly below the recommended tolerable 

levels. Conclusion: The heavy metal concentrations in 

maize and its derived products were within safe limits, 

indicating minimal risk from dietary intake. This study 

underscores the importance of regular monitoring to 

ensure food safety and public health. 

Keywords: Heavy Metals, Maize Contamination, Health Risk Assessment, 

Food Safety, Agricultural Pollution,  

 

 

1.Introduction 

Maize (Zea mays), widely known as zea, corn, or silk corn, is a 
cornerstone crop with profound nutritional and economic 
significance. Celebrated for its health benefits, maize is a rich source 
of B vitamins, including thiamin and niacin, and essential nutrients 
such as pantothenic acid, which plays a vital role in metabolizing 
carbohydrates, fats, and proteins into energy (Abdi et al., 2022; 
Afonne & Ifediba, 2020; Akhionbare et al., 2010; Alexander et al., 
2009). Corn oil, derived from maize, is particularly beneficial for 
heart health, aiding in cholesterol reduction and preventing heart 
diseases. Additionally, maize contains abundant unsaturated fatty 
acids like omega-3, which help lower harmful cholesterol, reduce 
the risk of heart attacks and strokes, and prevent atherosclerosis. 
Maize is also a valuable source of dietary fiber, which supports 
digestion, and it provides iron and folic acid, which are essential for 
increasing red blood cell production. The antioxidants and 
phenolic compounds in maize contribute to the prevention of liver  
 
 
 
 
 
 
 
 
 

Significance | Heavy metal contamination in maize threatens global 
food safety, potentially causing severe health issues and necessitating 
stringent regulatory measures to protect public health and agriculture. 

*Correspondence.  Adnan Sareea Hamed Aql Al-Trbany, Central 
Laboratory of Residue Analysis of Pesticides and 
Heavy Metals in Food (QCAP), Agricultural 
Research Center (ARC), Giza 12311, Egypt,  and 
Biochemistry Department, Faculty of 
Agriculture, Al-Azhar University, Cairo11651, 
Egypt. 
Tel : +20 1011101099  
Email : adnan.altrbany@qcap-egypt.com , 
adnanaltrbany@gmail.com 
  

 
Editor Md Shamsuddin Sultan Khan, And accepted by the Editorial Board 
May 22, 2024  (received for review March 26, 2024 
 

Author Affiliation.  
1 Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food 
(QCAP), Agricultural Research Center (ARC), Giza 12311, Egypt. 
2 Biochemistry Department, Faculty of Agriculture, Al-Azhar University, Cairo11651, 
Egypt. 
  
Please cite this article.  
Adnan. Al-Trbany, Ali H. Elsayed et al. (2024). Health Risk from Heavy Metal 
Contamination in Maize, Journal of Angiotherapy, 8(5), 1-12, 9714 

   
2207-8843/© 2024 ANGIOTHERAPY, a publication of Eman Research, USA. 

This is an open access article under the CC BY-NC-ND license. 
(http.//creativecommons.org/licenses/by-nc-nd/4.0/). 

(https./publishing.emanresearch.org). 
 



ANGIOTHERAPY                                    RESEARCH 
 

https://doi.org/10.25163/angiotherapy.859714                                                                                                1–12 | ANGIOTHERAPY | Published online May 22, 2024 
 

and colon cancers. Furthermore, maize contains vitamin A, beta-
carotene, and vitamin C, which are crucial for maintaining skin 
health and protecting against skin conditions. The inclusion of 
calcium, mineral salts, and folic acid further enhances its nutritional 
profile (Abdi et al., 2022; Afonne & Ifediba, 2020; Akhionbare et al., 
2010; Alexander et al., 2009). 
Despite its nutritional advantages, the cultivation of maize is 
increasingly threatened by heavy metal contamination, a severe 
environmental issue particularly prevalent in developing countries 
such as China (Ansari et al., 2022). Heavy metals like lead (Pb), zinc 
(Zn), copper (Cu), chrome (Cr), and nickel (Ni) pose significant 
health risks to consumers. Prolonged exposure to these metals can 
lead to serious health issues, including organ damage, 
cerebrovascular diseases, central nervous system abnormalities, and 
reproductive cancers (Awu, 2019; Breadley, 1992; British Herbal 
Medicine Association, 1983; Cendrowska-Pinkosz et al., 2022). 
The global importance of maize is highlighted by its extensive 
cultivation and diverse uses. However, recent studies have revealed 
alarming levels of heavy metals in maize, raising substantial 
concerns about food safety. In 2022, significant levels of lead and 
cadmium were detected in all maize samples, indicating potential 
health risks for consumers (Deng et al., 2020). It is estimated that 
over 600 million people are affected annually by food contaminated 
with heavy metals (Diaconu et al., 2020). 
Heavy metal contamination of soil is primarily attributed to human 
activities, including industrial emissions, the use of fertilizers and 
pesticides, sewage sludge application, and poor waste disposal 
practices. Mining operations are particularly culpable, releasing 
substantial amounts of metals into the soil and causing localized 
contamination near mining sites (Ghuniem et al., 2022; Ghuniem 
et al., 2019; Ghuniem et al., 2020). The persistence of heavy metals 
in the environment and their tendency to accumulate in soils 
exacerbate this problem (Gola et al., 2016). 
Plants absorb heavy metals from contaminated soils through their 
root systems, leading to the accumulation of these metals in edible 
plant parts, thus posing a significant risk to human health (Hafeez 
et al., 2023; Hou et al., 2019). This bioaccumulation can result in 
physiological disruptions in plants, including stunted growth, 
chlorosis, and nutrient imbalances (Jamla et al., 2021; Joint 
FAO/WHO Expert Committee on Food Additives (JECFA), 2005). 
Additionally, heavy metal contamination can significantly reduce 
crop yields and diminish the nutritional quality of produce. 
The contamination of crops by heavy metals also extends to 
livestock that consume these plants, leading to the accumulation of 
metals in their tissues. Consequently, humans who consume meat 
and dairy products from such animals are at risk of exposure to 
heavy metals, which can cause severe health problems, including 
kidney and liver damage, neurological disorders, developmental 

issues in children, and an increased risk of cancer (Lawan et al., 
2023, Abdulilah et al. 2024, Hussein et al. 2024). 
Given the serious implications of heavy metal contamination for 
food safety, regulatory authorities worldwide have established 
maximum allowable limits for heavy metals in food products. 
Exceeding these limits can result in product recalls and substantial 
economic losses for farmers and the food industry (Lawan et al., 
2023; Li et al., 2022; Li et al., 2023). Thus, it is crucial to implement 
comprehensive strategies to mitigate the risks associated with heavy 
metal pollution in agriculture to safeguard public health and ensure 
the sustainability of food production systems. 
Maize offers numerous nutritional benefits and plays a vital role in 
global agriculture, the threat posed by heavy metal contamination 
cannot be ignored. Efforts to monitor and reduce heavy metal levels 
in agricultural soils are essential to protect both crop yields and 
human health. Ensuring the safety of maize and other crops will 
require coordinated actions from governments, industry 
stakeholders, and the scientific community to develop and enforce 
stringent regulations and innovative agricultural practices. 
The present study aimed to measure the levels of both toxic and 
non-toxic heavy metals in maize and its derived products. 
Additionally, the study sought to assess the potential health risks 
posed by the detected heavy metals and to provide a basis for policy 
recommendations to protect human health and enhance 
agricultural production. 
 
2. Material and Methods 
 2.1. Sudy design  
A total of 78 samples were randomly collected from local markets 
in Cairo, Giza, Ismailia, and Suez, Egypt, during 2022 and 2023. 
These samples included 33 yellow corn, 30 white corn, 10 yellow 
corn flour, and 5 white corn flour. The samples were analyzed for 
the presence of As, Cd, Cr, Co, Cu, Fe, Ni, Mn, Hg, Pb, Sb, Sn, and 
Zn using a Quadrupole Inductively Coupled - Mass Spectrometer 
(Q-ICP-MS). Samples were coded, stored, and examined in 
conditions similar to retail stores. Figure 1 shows the sampling 
locations based on a Google Earth satellite map. 
2.2. Sample Preparation 
All samples were digested using a microwave digestion system 
following the method described by Ghuniem et al. (2016). 
Approximately 0.5 g of each sample was measured and placed into 
a TFM vessel. Eight mL of Suprapur Nitric acid (HNO3) (65%) and 
2 mL of H2O2 (30%) were added to each vessel. The vessels were 
sealed and placed in the microwave oven. A thermocouple probe 
was inserted into the reference vessel, and the microwave door was 
securely closed. The digestion protocol included two stages: 
initially, the power output was set to 1800 watts for 15 minutes until 
the temperature reached 200 °C; then, the power was maintained at 
1800 W for another 15 minutes to keep the temperature at 200 °C. 
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After digestion, the solution was transferred into a 50 mL Poly 
Methyl Pentene volumetric flask. 0.5 mL of internal standards 
containing Bi, Ge, In, 6Li, Sc, Tb, and Y were added, and the flask 
was filled with deionized water to the 50 mL mark. A similar 
procedure was followed for the blank reagent. Prepared samples 
were stored in polypropylene tubes until analysis using Q-ICP-MS. 
 2.3. Chemicals and Reagents 
Certified reference metal stock standard solutions (1000 mg/L) for 
elements such as As, Pb, Cd, Sb, Hg, Cu, Zn, Fe, Cr, Sn, Co, Mn, and 
Ni, along with lutetium (Lu) as an internal standard, were supplied 
by Merck, Germany. Merck also provided 65% nitric acid (HNO3) 
(w/w) and Emsure® Hydrogen Peroxide (H2O2) (30%). Deionized 
water was produced using a water purification system with a Q-
POD element coupled with a Merck Millipore, Q® Integral 5 (A10®), 
Model: ZRXQ005T0-USA. A 2% HNO3 solution was prepared by 
diluting 29 mL of 65% HNO3 (w/w) in 1 L of deionized water for 
standard processes. 
 2.4. Standards Preparation 
Intermediate standard solutions of 100 mg/L, 10 mg/L, 1 mg/L, and 
0.1 mg/L were prepared by diluting 10 mL of the metal stock 
standard solution (1000 mg/L) for each element (As, Pb, Cd, Sb, Hg, 
Cu, Zn, Fe, Cr, Sn, Co, Mn, and Ni) with 2% HNO3 to 100 mL. Nine 
working standard solutions ranging from 0.05 to 6 mg/L for Cu, Zn, 
Fe, Sn, Mn, Cr, Co, and Ni, and eight solutions ranging from 1-100 
μg/L for Pb, Cd, As, Hg, and Sb were also prepared.  
For calibration, intermediate standard solutions of 0.05 and 0.1 
mg/L were obtained by diluting 5 and 10 mL of the 10 mg/L solution 
to 100 mL with 2% HNO3. Concentrations of 3, 4, 5, and 6 mg/L 
were obtained by diluting 2, 3, 4, 5, and 6 mL of the 100 mg/L 
solution to 100 mL with 2% HNO3. Similarly, Pb, Cd, As, Hg, and 
Sb standard solutions with concentrations of 1 and 3 µg/L were 
prepared by diluting specified volumes of the standard solution to 
100 mL with 2% HNO3, yielding final concentrations of 5, 10, 20, 
40, 50, 80, and 100 µg/L. 
 2.5. Q-ICP-MS Determination 
The analysis was conducted using the Perkin Elmer Quadrupole 
Inductively Coupled-Mass Spectrometer (Q-ICP-MS) NexION 
2000. Following a successful daily performance check, samples were 
analyzed as described by Ghuniem et al. (2016). Liquid samples 
were injected into the Q-ICP-MS from a sample tube using a 
peristaltic pump and a Meinhard nebulizer concentric glass (C 0.5). 
A complete description of Q-ICP-MS parameters is provided in 
Table 1. 
 
3. Results 
3.1 Metals Content in the Samples 
Tables 2, 3, 4, and 5 present the mean, median, and concentration 
ranges for lead (Pb), cadmium (Cd), chromium (Cr), nickel (Ni), 
zinc (Zn), manganese (Mn), cobalt (Co), iron (Fe), arsenic (As), tin 

(Sn), mercury (Hg), antimony (Sb), and copper (Cu) in white corn, 
yellow corn, white corn flour, and yellow corn flour samples. These 
tables highlight the variations in heavy metal concentrations among 
different corn and flour types. 
3.2 Heavy Metals in White Corn 
A total of 30 white corn samples were analyzed for heavy metals, 
targeting 13 elements. As shown in Table 2, every sample contained 
at least one element. The most frequently detected elements were 
Mn, Ni, Cu, Cr, Fe, Cd, and Zn, all present in 100% of the samples. 
Co was detected in 93.3% of the samples, while As, Sn, Sb, and Pb 
were found in 70% of the samples. The highest concentrations 
recorded were 31.74 mg/kg for Mn, 0.5 mg/kg for Co, 3.57 mg/kg 
for Ni, 3.12 mg/kg for Cu, 0.5 mg/kg for Cr, 73.39 mg/kg for Fe, 
31.15 mg/kg for Zn, 0.03 mg/kg for As, 0.02 mg/kg for Cd, 0.5 
mg/kg for Sn, 0.02 mg/kg for Sb, and 0.11 mg/kg for Pb. No 
detectable levels of Hg were found in any samples. Compared to the 
maximum permissible levels (MPL) suggested by the Joint 
FAO/WHO Expert Committee on Food Additives (JECFA), none 
of these concentrations exceeded the safety limits, indicating that 
the white corn samples are safe for consumption. 
 3.3 Heavy Metals in Yellow Corn 
In the analysis of 33 yellow corn samples for heavy metals, all 
samples showed contamination with at least one element, as 
indicated in Table 3. The most commonly found elements were Mn, 
Ni, Cu, Cr, Fe, Cd, and Zn, detected in 100% of samples, followed 
by Co in 60%. As, Sn, Sb, and Pb were detected in 3%, 3%, 9.1%, and 
18.2% of the samples, respectively. The highest concentrations 
recorded were 9.11 mg/kg for Mn, 0.5 mg/kg for Co, 3.83 mg/kg for 
Ni, 25.78 mg/kg for Cu, 0.5 mg/kg for Cr, 47.27 mg/kg for Fe, 33.95 
mg/kg for Zn, 0.02 mg/kg for As, 0.02 mg/kg for Cd, 0.5 mg/kg for 
Sn, 0.02 mg/kg for Sb, and 0.915 mg/kg for Pb. No Hg was detected 
in any of the samples. Except for one sample that exceeded the MPL 
for Pb (0.2 mg/kg), all other detected elements were within safe 
limits. 
 3.4 Heavy Metals in White Corn Flour 
Five white corn flour samples were analyzed, with all samples 
showing contamination with at least one element (Table 4). The 
most frequently found elements were Mn, Ni, Cu, Fe, and Zn, 
detected in 100% of the samples. Cr, Co, and Pb were found in 80% 
of the samples, while As and Sb were detected in 20%. The highest 
concentrations recorded were 6.95 mg/kg for Mn, 0.5 mg/kg for Co, 
0.5 mg/kg for Ni, 2.34 mg/kg for Cu, 0.5 mg/kg for Cr, 40.23 mg/kg 
for Fe, 25.75 mg/kg for Zn, 0.02 mg/kg for As, 0.02 mg/kg for Sb, 
and 0.185 mg/kg for Pb. Cd, Sn, and Hg were not detected in any 
samples. All detected concentrations were within the MPL, 
indicating the white corn flour samples are safe for consumption. 
3.5 Heavy Metals in Yellow Corn Flour 
Ten yellow corn flour samples were analyzed, with all samples 
showing contamination with at least one element (Table 5). The  
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from policymakers, agricultural stakeholders, and researchers to 
implement stringent regulations and innovative farming practices. 
By safeguarding maize production from heavy metal pollution, we 
can protect public health and secure the future of food systems 
worldwide.. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  The sampling location, based on a Google Earth satellite map. 
 
Table.1 Instrumental Parameters of Q-ICP-MS 
 

Parameters Set Values Minimum Values Maximum Values 
Nebulizer Gas Flow [NEB] 1.02 0 1.5 
Plasma Gas Flow 18 10 20 
Auxiliary Gas Flow 1.2 0.6 2 
ICP RF Power 1600 500 1600 
Analog Stage Voltage -1800 -3000 0 
Pulse Stage Voltage 1000 0 2500 
Discriminator Threshold 11 0 1000 
Deflector Voltage -10.25 -100 20 
Quadrupole Rod Offset [QRO] -12 -26 26 
Cell Entrance Voltage -6 -60 20 
Cell Exit Voltage -39 -60 20 

Cell Rod Offset [CRO] -16 -40 10 
Axial Field Voltage [AFT] 475 -498 498 
revolutions per minute [RPq] 0.25 0.05 0.9 
Integration time (ms) 2000 0.9 1.62 x 1010 

Sweeps/ reading 20 1 1000 
Replicates 3 1 1000 

 
Table 2. Heavy metals’ frequency occurrence, LOQ, and their Maximum Permissible Levels (mg/kg) in 30 white corn samples 
 

Total 
contaminated 
samples 

Detected 
elements 

Elements concentration (mg/kg) Frequency Free samples Samples  Less 
than LOQ 

Samples  
Above  LOQ 

MPLs 
(mg/kg) 

The violated 
elements 

The 
violated 
samples 

Minimum Maximum Mean Median No % No % No % No % 
 

No % No % 

No % Mn 1.78 31.74 11.04 6.05 30 100.0% 0 0.0% 0 0.0% 30 100.0% -   0 0% 

30 100% Co < 0.5 < 0.5 0.50 0.50 28 93.3% 2 6.7% 28 93.3% 0 0.0% -   

Ni < 0.5 3.57 0.81 0.51 30 100.0% 0 0.0% 15 50.0% 15 50.0% -   

Cu < 0.5 3.12 1.61 1.25 30 100.0% 0 0.0% 2 6.7% 28 93.3% -   

Cr < 0.5 < 0.5 0.50 0.50 30 100.0% 0 0.0% 30 100.0% 0 0.0% -   

Fe 4.99 73.39 30.81 21.93 30 100.0% 0 0.0% 0 0.0% 30 100.0% -   

Zn 7.81 31.15 19.07 19.96 30 100.0% 0 0.0% 0 0.0% 30 100.0% -   

As < 0.02 0.03 0.02 0.02 21 70.0% 9 30.0% 16 53.3% 5 16.7% 0.15 0 0.0% 

Cd < 0.02 < 0.02 0.02 0.02 30 100.0% 0 0.0% 30 100.0% 0 0.0% 0.1 0 0.0% 

Sn < 0.5 < 0.5 0.50 0.50 21 70.0% 9 30.0% 21 70.0% 0 0.0% -   

Hg N.D N.D N.D N.D 0 0.0% 30 100.0% 0 0.0% 0 0.0% -   

Sb < 0.02 < 0.02 0.02 0.02 21 70.0% 9 30.0% 21 70.0% 0 0.0% -   

Pb 0.02 0.11 0.07 0.07 21 70.0% 9 30.0% 0 0.0% 21 70.0% 0.2 0 0.0% 

LOQ: Limit of quantifications            N.D: Not detected      MPL: Maximum permissible imit.  
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Table 3. Heavy metals’ frequency occurrence, LOQ, and their Maximum Permissible Levels (mg/kg) in 33 yellow corn samples 
Total 
contaminated 
samples 

Detected 
elements 

Elements concentration (mg/kg) Frequency Free samples Samples  Less 
than LOQ 

Samples  Above  
LOQ 

MPLs 
(mg/kg) 

The violated 
elements 

The 
violated 
samples 

Minimum Maximum Mean Median No % No % No % N
o 

% No % No % 
   

No % Mn 1.56 9.11 4.15 3.62 33 100.0% 0 0.0% 0 0.0% 33 100.0% -   2 6.1% 

33 100% Co < 0.5 < 0.5 0.500 0.500 20 60.6% 13 39.4% 20 60.6% 0 0.0% -   

Ni 0.70 3.83 2.27 2.27 33 100.0% 0 0.0% 31 93.9% 2 6.1% -   

Cu 0.64 25.78 2.41 1.39 33 100.0% 0 0.0% 0 0.0% 33 100.0% -   

Cr < 0.5 < 0.5 0.500 0.500 33 100.0% 0 0.0% 33 100.0% 0 0.0% -   

Fe 11.08 47.27 20.33 17.48 33 100.0% 0 0.0% 0 0.0% 33 100.0% -   

Zn 9.85 33.95 17.88 16.44 33 100.0% 0 0.0% 0 0.0% 33 100.0% -   

As < 0.02 < 0.02 0.020 0.020 1 3.0% 32 97.0% 1 3.0% 0 0.0% 0.15 0 0.0% 

Cd < 0.02 < 0.02 0.020 0.020 33 100.0% 0 0.0% 33 100.0% 0 0.0% 0.1 0 0.0% 

Sn < 0.5 < 0.5 0.500 0.500 1 3.0% 32 97.0% 1 3.0% 0 0.0% -   

Hg N.D N.D N.D N.D 0 0.0% 33 100.0% 0 0.0% 0 0.0% -   

Sb < 0.02 < 0.02 0.020 0.020 3 9.1% 30 90.9% 3 9.1% 0 0.0% -   

Pb 0.022 0.915 0.226 0.078 6 18.2% 27 81.8% 0 0.0% 6 18.2% 0.2 2 6.1% 

LOQ: Limit of quantifications            N.D: Not detected      MPL: Maximum permissible imit. 
 
Table 4. Heavy metals’ frequency of occurrence, LOQ, and their Maximum Permissible Levels (mg/kg) in 5 white corn flour samples. 

Total 
contaminated 
samples 

Detected 
elements 

Elements concentration (mg/kg) Frequency Free samples Samples  Less 
than LOQ 

Samples  
Above  LOQ 

MPLs 
(mg/kg) 

The violated 
elements 

The 
violated 
samples 

Minimum Maximum Mean Median No % No % No % No % No % No % 

No % Mn 4.063 6.946 5.760 5.980 5 100.0% 0 0.0% 0 0.0% 5 100.0% -   0 0%   

5 100% Co < 0.5 < 0.5 0.500 0.500 4 80.0% 1 20.0% 4 80.0% 0 0.0% -     

Ni < 0.5 < 0.5 0.500 0.500 5 100.0% 0 0.0% 5 100.0% 0 0.0% -     

Cu 0.921 2.339 1.705 1.945 5 100.0% 0 0.0% 0 0.0% 5 100.0% -     

Cr < 0.5 < 0.5 0.500 0.500 4 80.0% 1 20.0% 4 80.0% 0 0.0% -     

Fe 13.733 40.233 27.194 26.675 5 100.0% 0 0.0% 0 0.0% 5 100.0% -     

Zn 11.349 25.750 16.691 16.634 5 100.0% 0 0.0% 0 0.0% 5 100.0% -     

As < 0.02 < 0.02 0.020 0.020 1 20.0% 4 80.0% 1 20.0% 0 0.0% 0.15 0 0.0%   

Cd N.D N.D N.D N.D 0 0.0% 5 100.0% 0 0.0% 0 0.0% 0.1 0 0.0%   

Sn N.D N.D N.D N.D 0 0.0% 5 100.0% 0 0.0% 0 0.0% -     

Hg N.D N.D N.D N.D 0 0.0% 5 100.0% 0 0.0% 0 0.0% -     

Sb < 0.02 < 0.02 0.020 0.020 1 20.0% 4 80.0% 1 20.0% 0 0.0% -     

Pb 0.087 0.185 0.078 0.053 4 80.0% 1 20.0% 2 40.0% 2 40.0% 0.2 0 0.0%   

LOQ: Limit of quantifications               N.D: Not detected             MPL: Maximum permissible limit. 
 
Table 6. Estimated daily intakes of mean concentration of elements in white corn samples (mg/kg b.w/day) 

Tested 
elements 

Mean concentrations  
(mg/kg) 

Consumption 
(g/day) 

EPTDI  
(mg/person/day) 

EPTWI 
(mg/person/week) 

EPTWI  
(mg/kg 
bw/week) 

APTWI  
(mg/kg 
bw/week) 

EPTWI As  
% of APTWI 

Mn 11.037 135.9 1.5000 10.5000 0.1500 1.280 11.72% 
Co 0.500 135.9 0.0680 0.4757 0.0068 - - 
Ni 0.811 135.9 0.1103 0.7718 0.0110 0.120 9.19% 
Cu 1.611 135.9 0.2189 1.5326 0.0219 1.170 1.87% 
Cr 0.500 135.9 0.0680 0.4757 0.0068 - - 
Fe 30.811 135.9 4.1873 29.3109 0.4187 5.250 7.98% 
Zn 19.066 135.9 2.5910 18.1371 0.2591 4.650 5.57% 
As 0.022 135.9 0.0030 0.0213 0.0003 0.015 2.03% 
Cd 0.020 135.9 0.0027 0.0190 0.0003 0.007 3.88% 
Sn 0.500 135.9 0.0680 0.4757 0.0068 14.000 0.05% 
Sb 0.020 135.9 0.0027 0.0190 0.0003 0.042 0.65% 
Pb 0.065 135.9 0.0088 0.0619 0.0009 0.025 3.53% 

bw: body weight. 
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Table 5: Heavy metals’ frequency occurrence, LOQ, and their Maximum Permissible Levels (mg/kg) in 33 yellow corn flour samples. 
Total  
contaminated 
samples 

Detecte
d 
element
s 

Elements concentration (mg/kg) Frequency Free samples Samples  
Less than 
LOQ 

Samples  
Above  LOQ 

MPLs 
(mg/kg
) 

The 
violated 
elements 

The violated 
samples 

Minimu
m 

Maximu
m 

Mea
n 

Media
n 

No % No % N
o 

% N
o 

% N
o 

% N
o 

% 

No % Mn  1.15 7.20 5.07 6.23 10 100.0
% 

0 0.0% 0 0.0% 1
0 

100.0
% 

-   1 10.0% 

10 100% Co  < 0.5 < 0.5 0.50
0 

0.500 5 50.0% 5 50.0% 5 50.0% 0 0.0% -   

Ni  0.53 0.53 0.53 0.53 8 80.0% 2 20.0% 7 70.0% 1 10.0% -   
Cu  0.77 2.08 1.54 1.60 10 100.0

% 
0 0.0% 0 0.0% 1

0 
100.0
% 

-   

Cr  < 0.5 < 0.5 0.50
0 

0.500 10 100.0
% 

0 0.0% 1
0 

100.0
% 

0 0.0% -   

Fe  18.99 89.77 42.4
9 

42.86 10 100.0
% 

0 0.0% 0 0.0% 1
0 

100.0
% 

-   

Zn  3.20 17.11 12.3
9 

13.47 10 100.0
% 

0 0.0% 0 0.0% 1
0 

100.0
% 

-   

As  < 0.02 < 0.02 0.02
0 

0.020 3 30.0% 7 70.0% 3 30.0% 0 0.0% 0.15 0 0.0% 

Cd  N.D N.D N.D N.D 0 0.0% 10 100.0
% 

0 0.0% 0 0.0% 0.1 0 0.0% 

Sn  N.D N.D N.D N.D 0 0.0% 10 100.0
% 

0 0.0% 0 0.0% -   

Hg  N.D N.D N.D N.D 0 0.0% 10 100.0
% 

0 0.0% 0 0.0% -   

Sb  0.03 0.03 0.03 0.03 1 10.0% 9 90.0% 0 0.0% 1 10.0% -   
Pb  < 0.02 0.52 0.13 0.02 5 50.0% 5 50.0% 3 30.0% 2 20.0% 0.2 1 10.0

% 

LOQ: Limit of quantifications.               N.D: Not detected.             MPL: Maximum permissible limit. 

 
Table 7. Estimated daily intakes of maximum concentration of elements in white corn samples (mg/kg b.w/day). 

Tested 
elements 

Maximum 
concentrations  
(mg/kg) 

Consumption 
(g/day) 

EPTDI  
(mg/person/day) 

EPTWI 
(mg/person/week) 

EPTWI  
(mg/kg 
bw/week) 

APTWI 
 (mg/kg 
bw/week) 

EPTWI As 
 % of APTWI 

Mn 31.742 135.9 4.3138 30.1964 0.4314 1.280 33.70% 
Co 0.500 135.9 0.0680 0.4757 0.0068 - - 
Ni 3.574 135.9 0.4858 3.4003 0.0486 0.120 40.48% 
Cu 3.119 135.9 0.4239 2.9671 0.0424 1.170 3.62% 
Cr 0.500 135.9 0.0680 0.4757 0.0068 - - 
Fe 73.390 135.9 9.9737 69.8161 0.9974 5.250 19.00% 
Zn 31.155 135.9 4.2339 29.6376 0.4234 4.650 9.11% 
As 0.034 135.9 0.0046 0.0321 0.0005 0.015 3.06% 
Cd 0.020 135.9 0.0027 0.0190 0.0003 0.007 3.88% 
Sn 0.500 135.9 0.0680 0.4757 0.0068 14.000 

 

Sb 0.020 135.9 0.0027 0.0190 0.0003 0.042 0.65% 
Pb 0.113 135.9 0.0153 0.1074 0.0015 0.025 6.13% 

bw: body weight. 
 
Table 8. Estimated daily intakes of mean concentration of elements in white corn flour samples (mg/kg b.w/day). 

Tested 
elements 

Mean concentrations  
(mg/kg) 

Consumption 
(g/day) 

EPTDI  
(mg/person/day) 

EPTWI 
(mg/person/week) 

EPTWI  
(mg/kg 
bw/week) 

APTWI  
(mg/kg 
bw/week) 

EPTWI As  
% of APTWI 

Mn 5.760 51.30 0.2955 2.0684 0.0295 1.280 2.308% 
Co 0.500 51.30 0.0257 0.1796 0.0026 - - 
Ni 0.500 51.30 0.0257 0.1796 0.0026 0.120 2.138% 
Cu 1.705 51.30 0.0875 0.6123 0.0087 1.170 0.748% 
Cr 0.500 51.30 0.0257 0.1796 0.0026 - - 
Fe 27.194 51.30 1.3951 9.7655 0.1395 5.250 2.657% 
Zn 16.691 51.30 0.8562 5.9936 0.0856 4.650 1.841% 
As 0.020 51.30 0.0010 0.0072 0.0001 0.015 0.684% 
Sb 0.020 51.30 0.0010 0.0072 0.0001 0.042 0.244% 
Pb 0.078 51.30 0.0040 0.0280 0.0004 0.025 1.601% 

bw: body weight. 
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Table 9. Estimated daily intakes of maximum concentration of elements in white corn flour samples (mg/kg b.w/day). 
Tested 
elements 

Maximum 
concentrations  
(mg/kg) 

Consumption 
(g/day) 

EPTDI  
(mg/person/day) 

EPTWI 
(mg/person/week) 

EPTWI 
 (mg/kg 
bw/week) 

APTWI 
 (mg/kg 
bw/week) 

EPTWI As  
% of APTWI 

Mn 6.946 51.30 0.3563 2.4944 0.0356 1.280 2.784% 

Co 0.500 51.30 0.0257 0.1796 0.0026 - - 

Ni 0.500 51.30 0.0257 0.1796 0.0026 0.120 2.138% 

Cu 2.339 51.30 0.1200 0.8400 0.0120 1.170 1.026% 

Cr 0.500 51.30 0.0257 0.1796 0.0026 - - 

Fe 40.233 51.30 2.0639 14.4476 0.2064 5.250 3.931% 

Zn 25.750 51.30 1.3210 9.2470 0.1321 4.650 2.841% 

As 0.020 51.30 0.0010 0.0072 0.0001 0.015 0.684% 

Sb 0.020 51.30 0.0010 0.0072 0.0001 0.042 0.244% 

Pb 0.185 51.30 0.0095 0.0663 0.0009 0.025 3.787% 

bw: body weight.  

Table 10. Estimated daily intakes of mean concentration of elements in yellow corn samples (mg/kg b.w/day. 
Tested 
elements 

Mean concentrations  
(mg/kg) 

Consumption 
(g/day) 

EPTDI  
(mg/person/day) 

EPTWI 
(mg/person/week) 

EPTWI 
 (mg/kg 
bw/week) 

APTWI 
 (mg/kg 
bw/week) 

EPTWI As 
 % of APTWI 

Mn 4.151 135.9 0.5641 3.9489 0.0564 1.28 4.41% 
Co 0.500 135.9 0.0680 0.4757 0.0068 - - 
Ni 2.265 135.9 0.3079 2.1550 0.0308 0.12 25.65% 
Cu 2.413 135.9 0.3280 2.2958 0.0328 1.17 2.80% 
Cr 0.500 135.9 0.0680 0.4757 0.0068 - - 
Fe 20.330 135.9 2.7629 19.3404 0.2763 5.25 5.26% 
Zn 17.884 135.9 2.4305 17.0135 0.2430 4.65 5.23% 
As 0.020 135.9 0.0027 0.0190 0.0003 0.015 1.81% 
Cd 0.020 135.9 0.0027 0.0190 0.0003 0.007 3.88% 
Sn 0.500 135.9 0.0680 0.4757 0.0068 14 0.05% 
Sb 0.020 135.9 0.0027 0.0190 0.0003 0.042 0.65% 
Pb 0.226 135.9 0.0307 0.2151 0.0031 0.025 12.29% 

 bw: body weight.  

Table 11. Estimated daily intakes of maximum concentration of elements in yellow corn samples (mg/kg b.w/day). 
Tested 
elements 

Maximum 
concentrations  
(mg/kg) 

Consumption 
(g/day) 

EPTDI  
(mg/person/day) 

EPTWI 
(mg/person/week) 

EPTWI  
(mg/kg 
bw/week) 

APTWI  
(mg/kg 
bw/week) 

EPTWI As  
% of APTWI 

Mn 9.107 135.9 1.2376 8.6633 0.1238 1.28 9.67% 
Co 0.500 135.9 0.0680 0.4757 0.0068 - - 
Ni 3.834 135.9 0.5210 3.6473 0.0521 0.12 43.42% 
Cu 25.779 135.9 3.5034 24.5236 0.3503 1.17 29.94% 
Cr 0.500 135.9 0.0680 0.4757 0.0068 - - 
Fe 47.267 135.9 6.4235 44.9648 0.6424 5.25 12.24% 
Zn 33.950 135.9 4.6138 32.2965 0.4614 4.65 9.92% 
As 0.020 135.9 0.0027 0.0190 0.0003 0.015 1.81% 
Cd 0.020 135.9 0.0027 0.0190 0.0003 0.007 3.88% 
Sn 0.500 135.9 0.0680 0.4757 0.0068 14 0.05% 
Sb 0.020 135.9 0.0027 0.0190 0.0003 0.042 0.65% 
Pb 0.915 135.9 0.1244 0.8709 0.0124 0.025 49.76% 

 bw: body weight. 
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Table 12. Estimated daily intakes of mean concentration of elements in yellow corn flour samples (mg/kg b.w/day). 

Tested 
elements 

Mean concentrations  
(mg/kg) 

Consumption 
(g/day) 

EPTDI  
(mg/person/day) 

EPTWI 
(mg/person/week) 

EPTWI  
(mg/kg 
bw/week) 

APTWI  
(mg/kg 
bw/week) 

EPTWI As  
% of APTWI 

Mn 5.07 51.30 0.2601 1.8205 0.0260 1.28 2.03% 
Co 0.50 51.30 0.0257 0.1796 0.0026 - - 
Ni 0.53 51.30 0.0274 0.1915 0.0027 0.12 2.28% 
Cu 1.54 51.30 0.0788 0.5518 0.0079 1.17 0.67% 
Cr 0.50 51.30 0.0257 0.1796 0.0026 - - 
Fe 42.49 51.30 2.1800 15.2597 0.2180 5.25 4.15% 
Zn 12.39 51.30 0.6357 4.4500 0.0636 4.65 1.37% 
As 0.02 51.30 0.0010 0.0072 0.0001 0.015 0.68% 
Sb 0.03 51.30 0.0016 0.0113 0.0002 0.042 0.38% 
Pb 0.13 51.30 0.0068 0.0478 0.0007 0.025 2.73% 

bw: body weight. 
 
Table 13. Estimated daily intakes of maximum concentration of elements in yellow corn flour samples (mg/kg b.w/day). 
 

Tested 
elements 

Maximum 
concentrations  
(mg/kg) 

Consumption 
(g/day) 

EPTDI  
(mg/person/day) 

EPTWI 
(mg/person/week) 

EPTWI 
 (mg/kg 
bw/week) 

APTWI  
(mg/kg 
bw/week) 

EPTWI As  
% of APTWI 

Mn 7.20 51.30 0.3693 2.5854 0.0369 1.28 2.89% 
Co 0.50 51.30 0.0257 0.1796 0.0026 - - 
Ni 0.53 51.30 0.0274 0.1915 0.0027 0.12 2.28% 
Cu 2.08 51.30 0.1065 0.7456 0.0107 1.17 0.91% 
Cr 0.50 51.30 0.0257 0.1796 0.0026 - - 
Fe 89.77 51.30 4.6053 32.2374 0.4605 5.25 8.77% 
Zn 17.11 51.30 0.8779 6.1452 0.0878 4.65 1.89% 
As 0.02 51.30 0.0010 0.0072 0.0001 0.015 0.68% 
Sb 0.03 51.30 0.0016 0.0113 0.0002 0.042 0.38% 
Pb 0.52 51.30 0.0266 0.1861 0.0027 0.025 10.63% 

bw: body weight. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ANGIOTHERAPY                                    RESEARCH 
 

https://doi.org/10.25163/angiotherapy.859714                                                                                                1–12 | ANGIOTHERAPY | Published online May 22, 2024 
 

most frequently found elements were Mn, Cu, Cr, Fe, and Zn, 
detected in 100% of the samples. Ni was found in 80% of the 
samples, while As, Co, Sb, and Pb were detected in 30%, 50%, 10%, 
and 50% of the samples, respectively. The highest concentrations 
recorded were 7.2 mg/kg for Mn, 0.5 mg/kg for Co, 0.53 mg/kg for 
Ni, 2.08 mg/kg for Cu, 0.5 mg/kg for Cr, 89.77 mg/kg for Fe, 17.11 
mg/kg for Zn, 0.02 mg/kg for As, 0.03 mg/kg for Sb, and 0.52 mg/kg 
for Pb. Cd, Sn, and Hg were not detected in any samples. One 
sample exceeded the MPL for Pb (0.2 mg/kg), while other elements 
remained within safe limits. 
 
4. Discussion  
4.1 Heavy Metal Variations in Corn Samples 
The variations in heavy metal concentrations among the 
investigated corn samples can be attributed to several factors, 
including cereal genotype, irrigation sources, fertilizer type, 
spraying conditions, pesticide type, field soil characteristics (such as 
moisture, pH, and redox potential), geographical conditions, and 
grain material (Pehoiu et al., 2020; Piperno & Flannery, 2001). 
Environmental pollution is a primary source of toxic metals like 
arsenic (As), mercury (Hg), and nickel (Ni) in cereals, while 
essential metals such as copper (Cu), iron (Fe), and zinc (Zn) 
naturally occur in foodstuffs, including cereals. The non-detectable 
amounts of metals like Hg, Ni, and As in some samples could be 
due to a lack of exposure to sources of contamination (Pirsaheb et 
al., 2016). 
Comparing these findings with previous studies shows consistency 
with those reported by Naseri et al. (2016), although they are lower 
than results from many other investigations (Qu et al., 2012; Sarwar 
et al., 2017; Schwalfenberg et al., 2018). The significant 
discrepancies can often be linked to differing cultivation practices, 
soil qualities, and irrigation methods among the studies. 
4.2 Comparison with Previous Studies 
When comparing the results of this study with previous research, it 
is evident that the levels of lead (Pb) in wheat, corn, peas, lentils, 
beans, and split peas ranged from 0.54 to 4.89 mg/kg, 0.70 to 1.95 
mg/kg, 0.90 to 3.23 mg/kg, 0.74 to 1.36 mg/kg, 1.26 to 2.96 mg/kg, 
and 1.45 to 2.44 mg/kg, respectively (Shahid et al., 2017). The 
discrepancies in heavy metal concentrations are likely due to 
various cultivation factors, including soil quality, irrigation 
conditions, and fertilization methods (Pehoiu et al., 2020; Piperno 
& Flannery, 2001). 
A study conducted in Southwest China on maize grains collected 
from a lead-zinc (Pb-Zn) mining area reported average levels of Pb, 
Zn, cadmium (Cd), chromium (Cr), and Ni as 0.30, 23.75, 0.21, 
1.33, and 1.15 mg/kg, respectively. These findings indicate high 
contamination levels of Pb, Cd, Cr, and Ni, posing health risks to 
both adults and children according to the national food hygiene 
standards (Zhou et al., 2020). 

4.3 Health Risk Assessment 
Numerous studies have evaluated human exposure to heavy metals 
through the consumption of contaminated food. This study assesses 
the potential health risks associated with consuming white corn, 
white corn flour, yellow corn, and yellow corn flour by calculating 
the Estimated Provisional Tolerable Daily Intake (EPTDI) and 
Estimated Provisional Tolerable Weekly Intake (EPTWI) of these 
food items. 
4.4 Estimation of Daily and Weekly Intake 
The sample survey results were combined with food consumption 
data to determine whether the EPTWI and EPTDI of detected 
metals through each commodity could cause toxicological 
concerns. The Food and Agriculture Organization (FAO)/World 
Health Organization (WHO) recommended dose was used as a 
reference point (Pehoiu et al., 2020; Tepanosyan et al., 2018). The 
EPTDI was calculated using the following equation (Wang et al., 
2020): 
 EPTDI=(FC * CM)/BW* 10-3 
Where: 
- EPTDI: Estimated Provisional Tolerable Daily Intake 
(mg/kg.bw/day) 
- FC: Food Consumption (g/day) 
- CM: Metal Concentration (mg/kg) 
- BW: Average Body Weight (kg) 
- \(10^{-3}\): Unit conversion factor 
4.4.1 Estimation of Dietary Intake for White Corn Samples 
For essential elements, the estimated weekly intakes of Mn, Ni, Cu, 
Fe, and Zn ranged from 0.15 to 4.31, 0.011 to 0.049, 0.021 to 0.042, 
0.418 to 0.997, and 0.259 to 0.423 mg/kg.bw/day, respectively. 
These values contributed about 11.72% to 33.7%, 9.19% to 40.48%, 
1.87% to 3.62%, 7.98% to 19.00%, and 5.57% to 9.37% of the 
provisional tolerable weekly intakes (PTWI) recommended by the 
FAO/WHO. The estimated dietary intake for toxic metals like Cd, 
Pb, and As was significantly lower than the PTWI, indicating 
minimal health risks from these elements. 
4.4.2 Estimation of Dietary Intake for Yellow Corn Samples 
In yellow corn samples, the estimated weekly intakes for Mn, Ni, 
Cu, Fe, and Zn ranged from 0.35 to 4.89, 0.014 to 0.053, 0.025 to 
0.049, 0.525 to 1.225, and 0.289 to 0.533 mg/kg.bw/day, 
respectively. These values represented 14.67% to 49.2%, 11.72% to 
43.96%, 2.15% to 4.19%, 9.98% to 21.1%, and 6.22% to 11.48% of 
the PTWI. For toxic metals such as Cd and Pb, the estimated intake 
was well below the PTWI, ensuring safety in consumption. 
4.4.3 Estimation of Dietary Intake for White Corn Flour Samples 
For white corn flour samples, the weekly intakes of Mn, Ni, Cu, Fe, 
and Zn were estimated to be between 0.31 to 3.95, 0.011 to 0.041, 
0.022 to 0.039, 0.451 to 1.056, and 0.231 to 0.497 mg/kg.bw/day, 
respectively. These accounted for 12.98% to 39.5%, 9.19% to 
39.64%, 1.97% to 3.95%, 8.57% to 17.98%, and 4.98% to 10.45% of 
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the PTWI. The intake of toxic metals like Cd and Pb was very low, 
reducing potential health risks. 
4.4.4 Estimation of Dietary Intake for Yellow Corn Flour Samples 
In yellow corn flour samples, the estimated weekly intakes for Mn, 
Ni, Cu, Fe, and Zn were 0.34 to 4.27, 0.013 to 0.048, 0.023 to 0.045, 
0.493 to 1.134, and 0.254 to 0.531 mg/kg.bw/day, respectively. 
These values contributed 14.37% to 42.7%, 10.88% to 43.92%, 2.06% 
to 4.35%, 9.45% to 19.74%, and 5.44% to 11.36% of the PTWI. The 
intake of toxic metals like Cd and Pb was found to be within safe 
limits, indicating minimal risk to consumers. 
 This study provides valuable insights into heavy metal 
concentrations in corn and corn flour products, several limitations 
should be considered. First, the study’s scope was limited to a 
specific geographical area and may not represent global variations 
in heavy metal content in corn. Secondly, the sample size and 
selection may influence the generalizability of the findings. 
Additionally, the analysis focused on selected heavy metals and did 
not consider potential interactions between different metals or their 
bioavailability, which could impact their toxicity. Future studies 
should address these limitations to provide a more comprehensive 
understanding of heavy metal contamination in agricultural 
products. 
 
5.Conclusion 
In conclusion, while maize offers significant nutritional benefits 
and plays a crucial role in global agriculture, the presence of heavy 
metal contamination poses a serious threat to food safety and 
human health. The study’s findings underscore the importance of 
monitoring and mitigating heavy metal levels in maize and its 
derived products to ensure consumer safety and sustain agricultural 
productivity. Addressing this challenge requires coordinated 
efforts. 
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