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Abstract 
Background: Globally, lung cancer is the deadliest form of 

the disease. Genetic variability is one of the elements that 

influence an individual's vulnerability to lung cancer, 

according to epidemiological research. Asian women, 

smokers or not, have a higher risk of acquiring cancer 

because of genetic abnormalities, according to a recent 

investigation from the US National Cancer Institute that 

involved 14,000 Asian women. A superior approach for 

classifying lung cancer was presented in recent studies to 

address the aforementioned issue. In this study, the data 

scale is first normalized utilizing min max normalization, 

which is accomplished by data pre-processing. Methods: 

Gene selection is carried through employing Improved 

Whale Optimization Algorithm (IWOA). An Enhanced 

Convolutional Neural Network (ECNN) is employed for 

lung cancer categorization. However, lung cancer 

classification using single algorithm produces insufficient 

accuracy. This required the need for development of 

ensemble models. To evade this issue,input data scales are 

normalized based on Z score normalization model. Once 

the normalization is done, significant genes are selected 

from these normalized gene samples using Modified  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chicken Swarm Optimization (MCSO). Results: Finally, 

ensemble of ECNN, VGG16 and ResNet50 models are 

employed for lung cancer classification. Ensemble 

learning is performed in this work using majority voting. 

Conclusion: The suggested approach outperforms various 

alternatives in the field of accuracy, according to the 

findings. 

Keywords: Lung cancer, Microarray analysis, Gene selection, Ensemble 

learning, Deep learning 
 

 

Introduction 

Lung cancer (LC) death rates are rising in the modern era, based on 
data from several health organizations (Salem et al., 2017). There 
has been a substantial increase in the death ratio from cancer since 
the turn of the decade. Even with the widespread use of therapies 
such as radiation, chemotherapy, and surgery, more work needs to 
be done to achieve favorable outcomes. Precisely categorizing 
various forms of lung cancer is vital for optimizing treatment 
efficacy and minimizing harmful effects on individuals (Diaz et al., 
2014). 
Microarray analysis enables the study of millions of genes, 
providing essential data about cellular functions (Dass et al., 2014). 
This important data can significantly impact the prognosis and 
treatment of cancer. Given the features of gene expression data, it is 
crucial to develop an excellent strategy for identifying significant 
gene subsets that can be leveraged for more accurate cancer 
categorization. Utilizing this strategy, medical professionals can 
focus on specific genes and create less costly studies by classifying a  
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smaller selection of biologically related tumors characterized by 
their genes. This approach also helps reduce analytical expenses. 
Additionally, this highly accurate classification method aids in 
medication discovery and early identification of cancer patients 
(Almugren et al., 2019; Cahyaningrum and Astuti, 2020). 
Furthermore, prior knowledge is applied to verify the reliability of 
existing knowledge and to validate experimental data, adding new 
information or closing any gaps. Different gene expression profiles 
have been precisely categorized across tumor subtypes recently 
(Yuan et al., 2020; Azzawi et al., 2017). Studies have demonstrated 
that judicious use of readily available biological data can prevent 
biased outcomes from individual experiments and successfully 
eliminate noise in gene chips (Haznedar et al., 2021; Venkatesan et 
al., 2022). However, the potential of historical data for classifying 
cancers has not yet been fully acknowledged. 
A superior approach for classifying lung cancer was presented in 
current research to address the aforementioned issue. In this study, 
data scale normalization is first achieved using min-max 
normalization during data preprocessing. Gene selection is 
performed using the Improved Whale Optimization Algorithm 
(IWOA). The Enhanced Convolutional Neural Network (ECNN) is 
then employed for lung cancer categorization. However, lung 
cancer classification using a single algorithm often produces 
insufficient accuracy, necessitating the development of ensemble 
models. 
The study provided a system for the categorization of lung cancer 
to address classification issues. In the preprocessing phase, input 
data scales are normalized using the Z-score normalization model. 
During the gene selection phase, significant genes are selected from 
these normalized gene samples using the Modified Cuckoo Search 
Optimization (MCSO), which avoids local optima through the use 
of a mutation operator. In the detection phase, a majority voting-
based ensemble of Enhanced Convolutional Neural Network 
(ECNN), VGG16, and ResNet50 models is employed for lung 
cancer classification. This comprehensive approach improves the 
accuracy and reliability of lung cancer categorization. 
Literature Review 
Hu et al. (2019) suggested a system that classifies lung 
adenocarcinoma (LUAD) into four subtypes. Five genes might 
serve as LUAD markers, while 24 differentially expressed genes can 
be exploited as treatment targets. The subtypes function as 
prognostic subtypes according to a multivariate approach. 
Targetable indicators for the various subtypes were identified by 
analyzing relevant genes. The function and pathway enrichment 
analysis of these representative genes revealed that the four 
subtypes have distinct pathogenic pathways. Drug development 
might consider subtype-related mutations as possible indicators; 
subtypes 1 and 2 have TP53 mutations, while subtype 4 has EGFR 

mutations. These four subtypes serve as a basis for LUAD subtype-
specific therapy. 
Azzawi et al. (2019) proposed a method based on the MLP-IMPSO 
technology. To improve classification accuracy, the approach 
incorporates lung cancer categorization based on Gene Expression 
Data (GED). Utilizing actual microarray lung cancer datasets, 
extensive assessments and evaluations of prediction accuracy were 
conducted among the proposed approach and relevant machine 
learning techniques. The evaluation was deemed trustworthy due to 
cross-dataset validations. After previous information was 
incorporated, the proposed strategy performed superiorly. The 
findings demonstrated the efficacy of the proposed method for 
diagnosing lung cancer. 
Arunkumar and Ramakrishnan (2018) suggested a fuzzy rough 
quick reduct approach that establishes a personalized resemblance 
metric for selecting the minimum number of useful genes. 
Leukemia, lung, and ovarian cancer (OC) gene expression (GE) 
datasets were utilized to assess the proposed approach using a 
Random Forest (RF) classifier. The lung, leukemia, and OC GE 
datasets achieved classifier accuracies of 99.45%, 97.22%, and 
99.6%, respectively, with the proposed approach. Compared to 
current techniques, the proposed approach performs better in 
terms of f-measure, recall, accuracy, and precision in classification. 
Azzawi et al. (2018) suggested a novel Sample-Based Clustering 
(SBC) method for exploiting microarray data to identify subgroups 
of lung cancer. Gene Expression Profiling (GEP) is the foundation 
of the strategy. Extensive classification efficacy assessments and 
analyses were carried out using real microarray lung cancer 
datasets. These assessments compared the GEP system with popular 
binary decomposition methodologies and three techniques: 
Support Vector Machine (SVM), neural network, and C4.5. The 
reliability of cross-dataset validation was determined. According to 
the findings, the proposed approach outperformed other methods 
in terms of accuracy, standard deviation, and Area Under the Curve 
(AUC). 
Jinthanasatian et al. (2017) introduced a neuro-fuzzy firefly system 
applied to microarray categorization. This system uses a neuro-
fuzzy classifier to produce rule sets and select appropriate feature 
sets. The outcomes from seven public datasets, including lung 
cancer (LC), ovarian cancer (OC), acute lymphoblastic leukemia 
(ALL), colon cancer, and diffuse large B-cell lymphoma (DLBCL), 
were evaluated against current methods. It was discovered that the 
neuro-fuzzy firefly system could achieve comparable results with 
fewer selected features. 
Wang et al. (2018) suggested a Weighted Group Graphical Lasso 
(WGGL) framework for grouping cancer genes. The framework is 
based on weighted gene co-expression network evaluation and 
employs a heuristic approach for gene grouping. It includes a 
technique for estimating gene and group weights based on joint 
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shared data to assess the relative relevance of genes and groups. A 
gene selection method was developed to manage the complex 
computation process of WGGL. According to the findings on three 
cancer gene expression datasets and a random dataset, the proposed 
approach outperforms two contemporary gene selection techniques 
in terms of classification accuracy. 
Chaudhari and Agarwal (2018) introduced a feature set selection 
method for cancer categorization using microarray gene expression 
data. Due to the imbalance in the number of samples and genes, 
studying feature selection methods from complex gene expression 
data is crucial. They conducted a study on gene datasets using Elitist 
Binary Quantum Particle Swarm Optimization (EBQPSO). The 
findings demonstrate that the EBQPSO method, which integrates 
Particle Swarm Optimization (PSO) and Quantum PSO (QPSO), 
improves accuracy and recall value in deep searching and 
categorization of genetic datasets. 
 
 
 
Methodology 
The recommended framework is enclosed extensively in this 
section. There are three stages to the suggested approach. First one 
is Z score normalization based data normalization, second one is 
gene selection using modified chicken swarm optimization and the 
third one is classification using ensemble of ECNN, VGG16 and 
ResNet50 models. Figure 1 illustrates the overall structure of the 
recommended paradigm. 
Data normalization (DN) with Z score normalization (ZSN) 
Normalization is required to regulate the input scale after data 
balance. The common DM (Data Mining) steps to increase the 
precision of machine learning (ML) method is data pre-processing. 
Normalization is applied to all the data before to training and 
testing. This is employed to guarantee that data is not overloaded 
with one another. Data from several scales are converted to the 
same scale utilizing the normalizing process. This Z-score 
normalization process employs feature A's mean and standard 
deviation to normalize values. The following formula is applied: 

𝑣𝑣′ = 𝑣𝑣−�̅�𝐴
𝜎𝜎𝐴𝐴

                                                                                      (1) 

Where,  
𝑣𝑣′, v - each data entry's new and old, accordingly 

�̅�𝐴 , σA - the mean of A and its standard deviation, accordingly    
Gene selection using modified chicken swarm optimization 
After normalize the data, it required to select important features 
from the database, for which here used modifiedCSO. 
Chicken Swarm Optimization (CSO) 
The CSO method emulates the individual chickens' behaviors along 
with the hierarchical structure of of chickens (Hafez et al., 2015); 
(Tripathi et al., 2020). A chicken swarm's structure is separated into 
multiple categories, each of which has a rooster and numerous hens 

and chicks. The laws of motion that apply to various kinds of 
chickens vary. Chickens' social lives are significantly influenced by 
a system of hierarchy. A flock of hens will be dominated by its 
stronger members (Zarlis et al., 2016). Both the subservient hens 
and roosters who gather at the group's boundaries and the more 
powerful hens who stay close to the head roosters are 
present(Moldovan 2020). 
Traditional CSO will easily falls into the trap of local optimal 
features. 
To avoid this problem this work used mutation operator in CSO. 
This work used flip bit mutation. This operator for mutation 
accepts the selected genome and flips its bits. (The genomic bit 
switches from 1 to 0 and vice versa if it is a 1).  
Modified Chicken Swarm Optimization (MCSO) 
The MCSO structure was recommended in with assistance of the 
subsequent rules, that perfectly capture the actions of the hens. 
1) There are numerous groupings within the swarm of chickens. 
Usually is a leading rooster in each group, followed by a few hens 
and chicks. 
2) The roosters, who have the best fitness values, leading the flock, 
whereas the distinct birds are the chicks, which have the least fitness 
values. The flock's ordering depends on the fitness scores of the 
chickens. 
3) In a team, the mother-child bond, leadership dynamic, and 
swarm hierarchy won't alter. Only some (G) time steps pass 
amongst updates to these statuses. 
4) The N virtual chickens that constitute up the swarm are separated 
into the sets: RN, CN, HN, and MN, which stand for the quantity of 
roosters, chicks, hens, and mother hens, accordingly. Positions of 
each person in a D-dimensional space are portrayed as 
𝑥𝑥𝑖𝑖,𝑗𝑗(𝑖𝑖∈[𝑖𝑖,……..𝑁𝑁],𝑗𝑗∈[1,…..,𝐷𝐷]),                                                               (2) 

Rooster Movement: Equations (3) and (4) illustrate why roosters 
with higher fitness values may look for food in a greater variety of 
locations than those with fewer fitness values. 
𝑥𝑥𝑖𝑖,𝑗𝑗𝑡𝑡+1 = 𝑥𝑥𝑖𝑖,𝑗𝑗𝑡𝑡 ∗ �1 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(0,𝜎𝜎2)�                                            (3) 

𝜎𝜎2

= �
1,         𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑖𝑖𝑘𝑘  ,⬚|

𝑒𝑒𝑥𝑥𝑒𝑒 �
𝑖𝑖𝑘𝑘 − 𝑖𝑖𝑖𝑖
|𝑖𝑖𝑖𝑖|+∈

� 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 ∈ [1,𝑁𝑁],𝑒𝑒 ≠ 𝑖𝑖,                                (4           

Where as xi;j is the particular rooster using index i, standard 
deviation 𝜎𝜎2 , Rand n(0,𝜎𝜎2)is a Gaussian distribution through 
mean 0.∈ 𝑒𝑒the smallest computer constant that prevents zero-
division error, k is a arbitrarily generated rooster index taken from 
the roosters company, and fi is the associated rooster xi's fitness 
value. 
Hen movement: A bunch of hens look for food by trailing behind 
roosters. In addition, while being suppressed by the remaining 
chickens, they would haphazardly steal the tasty food that they 
discovered. In a competition for food, the more assertive chickens 
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would have a benefit over the more timid ones. Equations (5) and 
(6) provide a formulation for these instances. 
𝑥𝑥𝑖𝑖,𝑗𝑗𝑡𝑡+1 = 𝑥𝑥𝑖𝑖,𝑗𝑗𝑡𝑡 + 𝑆𝑆1 ∗ 𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗ �𝑥𝑥𝑟𝑟1,𝑗𝑗

𝑡𝑡 − 𝑥𝑥𝑖𝑖,𝑗𝑗𝑡𝑡 � + 𝑆𝑆2 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗

�𝑥𝑥𝑟𝑟2,𝑗𝑗
𝑡𝑡 − 𝑥𝑥𝑖𝑖,𝑗𝑗⬚

𝑡𝑡 �       (5) 

𝑆𝑆1 = 𝑒𝑒𝑥𝑥𝑒𝑒�(𝑖𝑖𝑖𝑖 − 𝑖𝑖𝑟𝑟1)/
𝑅𝑅𝑎𝑎𝑒𝑒(𝑖𝑖𝑖𝑖)+∈�)                                                                           (6) 
𝑆𝑆1 = 𝑒𝑒𝑥𝑥𝑒𝑒 ��𝑖𝑖𝑟𝑟2−⬚⬚

𝑖𝑖𝑖𝑖��                                                                                    (7) 

Whereas, A uniform random number across [0, 1] is called a Rand. 
r1∈ [1,….., N] is rooster’s index, that is ith hen’s group-mate, whereas 
r2∈  [1,….., N, is arbitrarilyselectedchicken index from the swarm. 
Chick movement: The chicks follow their mother throughout in an 
attempt to get nourishment. It is expressed in equation (8). 
𝑥𝑥𝑖𝑖,𝑗𝑗𝑡𝑡+1   =𝑥𝑥𝑖𝑖,𝑗𝑗𝑡𝑡 + 𝐹𝐹𝐹𝐹 ∗ �𝑥𝑥𝑚𝑚,𝑗𝑗

𝑡𝑡 − 𝑥𝑥𝑖𝑖,𝑗𝑗𝑡𝑡 �                                                (8) 
Where 𝑥𝑥𝑚𝑚,𝑗𝑗

𝑡𝑡   is the spot of the mother of the ith chick which m ∈  
[1;N], The FL variable specifies the variations amongst each chick 
and indicates the pace at which a chick is following its mother. FL 
is selected at random from the interval [0, 2]. 
To identify the optimum location in the search space that optimizes 
the specified FF, one must employ a smart finding methodsince the 
feature space is so huge, where each feature is depicted by a separate 
dimension with a span of 0 to 1. Equation (9) illustrates the FF, 
which is to optimize the classification accuracy across the validation 
set provided the training data while maintaining the smallest 
amount of selected features. 
𝑖𝑖𝜃𝜃 = 𝜔𝜔 ∗ 𝐸𝐸 + (1 − 𝜔𝜔) ∑ 𝜃𝜃𝑖𝑖𝑖𝑖

𝑁𝑁
                                                         (9) 

Where as N is the total quantity of features in the dataset, E is the 
classifier error rate, and 𝜔𝜔 is a constant controlling the significance 
of the classifier's accuracy to the quantity of features chosen. Given 
a vector 𝜃𝜃 with 0/1 elements indicating unselected / selected 
attributes, 𝑖𝑖𝜃𝜃 is the (FF) fitness function. 
The quantity of features in the provided dataset matches the 
quantity of parameters utilized. Each parameter is constrained to 
the interval [0, 1], whereby its value reaches 1 and the associated 
feature is a potential candidate for classification selection. The 
factor in the individual fitness analysis is the threshold, which 
determines which qualities in particular need to be assessed 
according to equation (10). 

𝑖𝑖𝑖𝑖,𝑗𝑗 = �
1 𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖,𝑗𝑗 > 0.5
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒,

                                                                 (10) 

Where in search agent i's dimension value at dimension j is 
represented by Xij. To safeguard variable limitations when updating 
the firefly position solution, a simple truncation rule was employed 
because the updated value may breach the maximum constraints at 
certain dimensions [0, 1]. 

1. Set RN, HN, CN, MN, G; 
2. Start every chicken in the swarm at arbitrarily. 
3. Xi (i = 1,2,……;N).; 
4. Set the max numbers of iteration Tmax; 
5. while T <Tmax do for every iteration 

6. if T % G equals 0 then 
7. Sort the hens according to their fitness levels and create a 

hierarchy inside the swarm;  
8. Split the swarm into several sets and ascertain how each 

group's chicks and mother hens interact. 
9. end 
10. for every chicken Xi in the swarm do 
11. if Xi is a roster then 
12. Update Xi’s location utilizing equation 8; 
13. end 
14. if Xi is a hen then 
15. Update Xi’s location utilizing equation 5; 
16. end 
17. if Xi is a chick then 
18. Update Xi’s location utilizing equation 8;  
19. end 
20. Assess the novel solution utilizing equation 10; 
21. If the new solution is better than its previous  one, update 

it; 
22. end 
23. end 
24. Apply flip bit mutation to the updated solution 
25. Estimate the novel solution utilizing equation 10 
26. end  

Classification using ensemble of ECNN, VGG16 and ResNet50 
models 
Following feature selection, an ensemble of ECNN, VGG16, and 
ResNet50 models are employed to classify lung cancer. 
Enhanced CNN 
Three different types of layers comprise up the CNN: fully linked, 
subsampling, and convolution layers. Figure 2 depicts an ordinary 
CNN design. 
Convolution layer         
A kernel (filter) is employed in this convolution layer to gather an 
input feature (Albahar 2019).  n output feature maps are produced 
utilizing the input feature and kernel convolution output. The 
output features produced by assembling the kernel and the input 
are termed as FM (Feature Maps) of size i*i, but the kernel of the 
convolution matrix is usually termed as a filter. 
Fuzzy Membership Function (FMF), that is utilized for FM, is 
described as (w1 = 0.3, w2 = 0.4, w3 = 0.5, w4 = 0.7) and 
considered as  

𝒐𝒐𝟐𝟐 =
𝒖𝒖𝒊𝒊

(𝒋𝒋)�𝒂𝒂𝒊𝒊
(𝟐𝟐)�                                                                                    (11) 

Where 𝒖𝒖𝒊𝒊
(𝒋𝒋)(. ) is a membership function𝒖𝒖𝒊𝒊

(𝒋𝒋)(. ):𝑹𝑹⟶ [𝟎𝟎,𝟏𝟏], 
i=1,2,…,M, j =1,2,….,N. By utilizing the (GMF) Gaussian 
membership function. 
The output of the l-th convolution layer, denoted as 𝐶𝐶𝑖𝑖

(𝑙𝑙), consists of 
FM calculated as 
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𝐶𝐶𝑖𝑖
(𝑙𝑙) =𝐵𝐵𝑖𝑖

(𝑙𝑙) + ∑ 𝐾𝐾𝑖𝑖,𝑗𝑗
(𝑙𝑙−1) ∗𝑎𝑎𝑖𝑖

(𝑙𝑙−1)

𝑗𝑗=1 𝐶𝐶𝑗𝑗
(𝑙𝑙)                                                (12) 

Whereas, 𝐵𝐵𝑖𝑖
(𝑙𝑙)is the bias matrix and 𝐾𝐾𝑖𝑖,𝑗𝑗

(𝑙𝑙−1)is convolution filter or 

kernel of size a*a that connectsthe i-th FM in a similar layer as the 
j-th FM in layer (l − 1).  
The output 𝐶𝐶𝑖𝑖

(𝑙𝑙) layer contains FM. In (12), the first convolutional 
layer 𝐶𝐶𝑖𝑖

(𝑙𝑙−1)is input space, that is, 𝐶𝐶𝑖𝑖
(0) = 𝑋𝑋𝑖𝑖. A FM is created by the 

kernel. The activation function utilized to perform a nonlinear 
modification of the convolutional layer's outputs afterward the 
convolution layer. 
𝑌𝑌𝑖𝑖

(𝑙𝑙) = 𝑌𝑌(𝐶𝐶𝑖𝑖
(𝑙𝑙))                                                                            (13) 

Where, 𝑌𝑌𝑖𝑖
(𝑙𝑙) is output of the AF (Activation Function) and 𝐶𝐶𝑖𝑖

(𝑙𝑙)is the 
data that it gets.     
Sub sampling or pooling Layer       
Decreasing the size of the FM that was adopted by the prior 
convolution layer geographically is the primary goal of this layer. 
Among the mask and the FM, a subsampling procedure is carried 
out. Numerous subsampling techniques were put forth, including 
maximum, sum, and average pooling. The max pooling, in each 
block's maximum value links to an output feature. Recall that the 
convolution layer can withstand rotation and translation amongst 
the input data with the assistance of a subsampling layer. 
Fully Connected layer (FC) layer    
A conventional feed forward network containing one or more 
hidden layers assists the last layer of a CNN. The AF Softmax is 
utilized in the output layer: 
𝑌𝑌𝑖𝑖

(𝑙𝑙) = 𝑖𝑖(𝑧𝑧𝑖𝑖
(𝑙𝑙)),                                                                              (14) 

Where 𝑧𝑧𝑖𝑖
(𝑙𝑙) = ∑ 𝑒𝑒𝑖𝑖,𝑗𝑗

(𝑙𝑙)𝑦𝑦𝑖𝑖
(𝑙𝑙−1)𝑚𝑚𝑖𝑖

(𝑙𝑙−1)

𝑖𝑖=1                                                (15) 
Where,  𝑒𝑒𝑖𝑖,𝑗𝑗

(𝑙𝑙) are the weights for every class's image must 

have formed by fine-tuning the entire fully linked layer, and f is the 
transfer function specifies nonlinearity. Observe that unlike 
convolutions and pooling layers, which have nonlinearity 
constructed in separate layers, the FC layer has nonlinearity 
incorporated within the neurons. 
VGG-16 model    
Figure 3 illustrates the VGG16 framework, which is an CNN 
framework with 13 convolutional layers(CL) (C1, C2, C3 to C13) 
and 3 FC layers (FC-6, FC-7, and FC-8). Only three x three kernel 
sizes are employed in the VGG16 network's architecture, with each 
CL floating over top of the others to enhance depth(Kaur and 
Gandhi 2019). A stack of CL with a 3 x 3 kernel size was sent 
through the initial CL feed input in the pre-trained framework. 
Following the max-pooling layer are some convolutional layers with 
a 2 x 2 filter size. Three FC layers with varying depths and formats 
follow the set up of all CL. The first two entirely linked layers have 
4096 channels, and the third FC layer has 1000 channels since it uses 
1000-way ILSVRC categorization. 
ResNet50 

As seen in picture 4, ResNet-50 is a ResNet variation with 50 layers. 
Three types of layers were processed by ResNet-50: 48 CL, 1 
MaxPool layer, and 1 average pool layer(Al-Haija and Adebanjo 
2020). The fundamental idea behind ResNets is to employ shortcuts 
to get around CL bottlenecks. The fundamental Block, known as the 
"bottleneck," adheres to two important design principles: For a 
given output FM size, layers have an equal number of filters; if the 
FM size is half, the quantity of filters is doubled (Tian and Chen 
2019); (Metwalli et al., 2020). Figure 3 illustrate the ResNet-50 
structure. 
Ensemble learning  
Majority Voting (MV) is a technique for making decisions that is 
derived from classifiers which are run n times, independently, and 
separately, each time providing additional capabilities.  Let C be an 
array of Q classes and χ be a collection of N examples. Defining a 
method set S = {A1, A2, AM}, comprising the M classifiers utilized in 
the voting process, is necessary. The Q classes is allocated to each 
case x ∈ χ. Every instance will have a forecast for every time 
classifier. Each sample's final class is the one that the vast majority 
of classifiers projected for this particular case.Every vote in MV is 
weighted according to the classifier's accurate prediction value, 
represented by the letter Acc. Then, the total number of votes for a 
class ck expressed as follows: 
𝑇𝑇𝑘𝑘 = ∑ 𝐴𝐴𝐴𝐴𝐴𝐴 (𝐴𝐴𝑙𝑙) × 𝐹𝐹𝑘𝑘(𝐴𝐴𝑙𝑙)𝑀𝑀

𝑙𝑙=1                                                     (16) 

𝐹𝐹𝑘𝑘(𝐴𝐴𝑙𝑙) =  �1          𝐴𝐴𝑙𝑙 = 𝐴𝐴𝑘𝑘
0           𝐴𝐴𝑙𝑙 ≠ 𝐴𝐴𝑘𝑘

                                                         (17) 

Where cl and ck arethe classes of C.  The class with the 
highest cumulative weight is selected.  Essentially, weights are 
allocated to each classifier after it has been trained on various 
independent training sets, resulting in the maximum classification 
rate possible for classifying the data as positive or negative. 
Performance Metrics  
The ratio of accurately discovered positive outcomes to all 
anticipated positive data is recognized as precision. 

Precision = TP/TP+FP                                                               (18)   
The F1 score is defined as the weighted average of the 

Precision and Recall. It involves false positives and false negatives 
as an outcome. 

F1 Score = 2*(Recall * Precision) / (Recall + Precision)            (19) 
The following is the calculation of accuracy in positives and 
negatives: 

Accuracy = (TP+FP)/(TP+TN+FP+FN)                                    (20) 
Specificity quantifies the percentage of actual negatives that the 
framework accurately detects in the manner described below.  
Specificity = TN / TN + FP                                                         (21) 
While TN- true negative, TP –true positive, FN –false negative and 
FP –false positive. 
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Figure.2. Convolutional Neural Network architecture 
 

 
Figure 3.VGG-16 architecture 
 

 
Figure 4. ResNet-50 architecture 
 

Figure 1. Over all structural design of the suggested 
framework 
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Table.1. Performance comparison results  
 

Metrics Methods 
 
MIMAGA SMO 

 
MLSTM 
 

ICNN EDL  

Accuracy 81.22 84.46 87.12 
 

92.78 94.84 

Precision 79.89 
 

80.85 88.78 
 

93.06 98.19 

Sensitivity 76.66 
 

79.43 
 

86.65 91.96     97.09 

F Measure 77.14 79.01 87.34 92.51 97.63 

 
 
 

  

  
 
Figure 5. (A) Accuracy results, (B) Precision results, (C) Sensitivity levels, (D) F-measure results. 
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Results and Discussion  
The rising death rates from lung cancer despite advancements in 
treatments highlight the need for improved diagnostic methods. 
Microarray analysis and gene expression profiling enable precise 
categorization of lung cancer, optimizing treatment. A 
comprehensive approach utilizing data normalization, gene 
selection, and ensemble models has shown promise in enhancing 
accuracy and reducing costs. This study provided a system for the 
categorization of lung cancer to address classification issues. 
The study utilized Matlab 2013b to implement the proposed 
framework and compared the performance metrics of the 
Enhanced Deep Learning (EDL) system against current 
methodologies such as MIMAGA, SMO, MLSTM, and ICNN using 
the Kent Ridge Bio-Medical Dataset. This dataset comprised GE 
information from 10 non-neoplastic lung samples and 86 primary 
lung adenocarcinoma samples, featuring a total of 7129 genes. A 70-
30 split was adopted, with 30% allocated as the test set and 70% as 
the training set for comprehensive evaluation. The outcomes of this 
comparative analysis are presented in Table 1. 
In the assessment of machine learning (ML) and deep learning (DL) 
methods, accuracy stands out as a critical parameter. Five distinct 
approaches were applied to original input photos for evaluation. 
Figure 5A depicts the accuracy of various classifiers. The 
recommended Enhanced Deep Learning (EDL) Classifier achieved 
94.84% accuracy, surpassing MIMAGA, SMO, MLSTM, and ICNN 
with accuracies of 81.22%, 84.46%, 87.12%, and 92.78%, 
respectively. This enhancement in accuracy can be attributed to two 
primary factors. Firstly, the suggested model employs data 
normalization using the z-score approach, which outperforms 
other standard algorithms, thus improving classification accuracy. 
Secondly, the utilization of a mutation operator in the Modified 
Chicken Swarm Optimization (MCO) contributes to enhanced 
accuracy. 
Classifier efficiency was further evaluated using precision as an 
additional performance criterion. The EDL approach achieved a 
remarkable precision outcome exceeding 98.19% during testing 
(Figure 5B). In contrast, MLSTM, ICNN, SMO, and MIMAGA 
exhibited lower precision scores of 79.89%, 80.85%, 88.78%, and 
93.06%, respectively. Notably, the ICNN classifier, incorporating a 
fuzzy function for weight value calculation, significantly improved 
precision results. 
After implementing the data preprocessing approach, the suggested 
EDL model demonstrates superior performance over current 
MIMAGA, SMO, MLSTM, and ICNN systems in terms of 
specificity. This enhancement can be attributed to the crucial role 
of scale normalization in improving classifier accuracy. Sensitivity 
levels of the methods are depicted in Figure 5C, where the EDL 
strategy achieves a sensitivity rate of 97.09%, surpassing the rates of 

76.66%, 79.43%, 86.65%, and 91.96% for MIMAGA, SMO, MLSTM, 
and ICNN systems, respectively. 
The F measure, which represents the harmonic mean of precision 
and recall scores, serves as a comprehensive evaluation metric. 
Figure 5D contrasts the F measure of the suggested system with 
those of MIMAGA, SMO, MLSTM, and ICNN. The EDL model 
achieves the highest F measure at 97.63%, followed by ICNN at 
92.51%, MLSTM at 87.34%, and SMO at 79.01%. The MIMAGA 
algorithm obtains the lowest F-measure score of 77.14%. This 
highlights the effectiveness of deep learning classifiers, which 
leverage appropriate filter sizes and weights to enhance 
classification accuracy and F measure results. 
 
Conclusion 
In conclusion, lung cancer remains a significant cause of mortality 
in China, necessitating advancements in diagnostic methods. The 
development of deep neural networks leveraging gene expression 
data offers a promising solution for early lung cancer diagnosis. 
This study's framework, incorporating Z-score normalization, 
Modified Chicken Swarm Optimization, and an ensemble of 
ECNN, VGG16, and ResNet50 models, achieved a notable 98.50% 
accuracy. Future work should address dimensionality reduction to 
prevent overfitting, further enhancing the efficacy of deep learning 
models in lung cancer classification. 
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