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Abstract 
Background: Breast cancer (BC) remains a significant 

global health concern, with high incidence and mortality 

rates. Early detection and accurate classification are 

crucial for effective treatment. Traditional BC treatments 

include surgery, radiation, and medication aimed at 

eliminating microscopic malignancies. Advances in 

machine learning (ML) and deep learning (DL) have shown 

promise in enhancing BC diagnosis and classification 

accuracy. Method: This study used a novel classification 

model for BC using a Deep Neural Network-Genetic 

Algorithm-Evolutionary Strategy Optimization (DNN-GA-

ESO) approach. The methodology involves three key 

phases: data preprocessing using Improved Linear 

Discriminant Analysis (ILDA), outlier detection via a Deep 

Neural Network (DNN), and feature selection using a 

Genetic Algorithm (GA). Finally, the Evolutionary Strategy 

Optimization (ESO) algorithm classifies the BC data as 

benign or malignant. The effectiveness of this approach 

was validated using the Wisconsin Breast Cancer (WBC) 

and Wisconsin Diagnosis Breast Cancer (WDBC) datasets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results: The proposed DNN-GA-ESO method 

demonstrated superior performance in classifying BC. For 

the WBC dataset, the model achieved an accuracy of 

99.30%, precision of 99.35%, F-measure of 0.9936, recall of 

99.42%, and kappa statistic of 99.48%. For the WDBC 

dataset, it achieved an accuracy of 99.45%. These results 

significantly outperformed existing methods such as K-

means with Decision Tree, UPFC with ASVM, and other 

standard ML algorithms. Conclusion: The DNN-GA-ESO 

approach enhances BC classification accuracy through 

efficient outlier detection and feature selection. This 

method surpasses traditional and current techniques, 

providing a more reliable and precise diagnostic tool for 

early BC detection. The integrated meta-algorithm offers 

a promising solution for medical diagnostics, potentially 

improving patient outcomes through early and accurate 

detection of BC. 
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Introduction 

Breast cancer (BC) treatment can be highly effective, especially 
when the disease is detected early. Most BC treatments involve 
surgery, radiation, and medication, targeting microscopic 
malignancies that have entered the circulation from a breast tumor. 
This approach can save lives and halt the growth and spread of 
cancer. By 2020, there were 2.3 million new cases diagnosed, and 
685,000  individuals   died  from   the   disease. The  World  Health 
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Organization (WHO) predicts that BC will be the most common 
cancer globally (Mridha et al., 2021). Following lung cancer, 7.8 
million people have been diagnosed with BC in the past five years. 
The most common types of BC, which can be identified using a 
microscope, are invasive ductal carcinoma (IDC) and ductal 
carcinoma in situ (DCIS). DCIS grows more slowly and has less 
impact on the patient's daily activities. Up to 80% of BC cases are 
diagnosed as IDC, which is more deadly as it involves the entire 
breast tissue, whereas DCIS accounts for 20-53% of cases. IDC 
affects around 80% of people with BC. BC causes the most 
disability-adjusted life years (DALYs) lost compared to all other 
cancer types combined (Mao et al., 2019). 
Any woman after puberty, in any region of the world, can develop 
BC at any time. The number of women who passed away from BC 
between 1930 and 1970 remained essentially steady. However, in 
the 1980s, life expectancy started to increase in countries that 
implemented various treatments to eliminate invasive illnesses and 
early detection systems. Unlike other cancers, BC is not 
communicable. While there is a clear association between HPV 
infection and cervical cancer, there is no established correlation 
between viral or bacterial infections and BC. Approximately 50% of 
BC cases occur in women who are 40 years of age or older. BC is 
more common in women who take hormone therapy after 
menopause, consume alcohol excessively, or have a family history 
of the illness. 
A lump or a painless thickening of the breast are both signs of BC. 
Regardless of how uncomfortable a lump is, women should seek 
medical assistance as soon as they detect one in their breasts (Wang 
et al., 2018). There are numerous causes of breast lumps, the 
majority of which are harmless. About 90% of breast lumps are 
benign and do not pose any health risks. Non-malignant 
abnormalities include breast infections and benign tumors such as 
cysts and fibroadenomas. A comprehensive medical evaluation is 
necessary (Valvano et al., 2019). 
Breast imaging is often used to determine whether a tumor is 
malignant or benign, sometimes involving the removal of a tissue 
sample for further analysis. Women who experience chronic 
symptoms lasting more than one month should undergo tests such 
as breast imaging and tissue sampling (biopsy) (Devi & Devi, 2016). 
Machine Learning (ML) algorithms have made significant 
advancements in diagnosing and classifying breast cancer (BC) over 
the past few decades. These techniques involve three main 
procedures: preprocessing, feature extraction, and classification. 
Preprocessing mammography films to enhance their peripheral and 
intensity distributions can improve the evaluation and 
interpretation of images. Various methods have been developed for 
this purpose, many of which have proven effective (Khan et al., 
2019). The application of ML is expanding and may soon be offered 
as a standard service. However, ML remains a complex field that 

typically requires specialized knowledge and skills. A reliable ML 
approach demands a broad range of competencies, including 
feature engineering, preprocessing, and classification techniques 
(Huang et al., 2019). 
Some ML algorithms, such as support vector machines (SVM) and 
K-nearest neighbors (KNN), often fail to perform as expected due 
to the presence of unnecessary features (Shaban et al., 2020). 
Eliminating certain characteristics before applying ML algorithms 
can significantly enhance the accuracy of classification systems 
(Haq et al., 2021). Feature selection involves identifying the 
essential qualities from the original set. The primary goals of the 
feature selection process are to prevent overfitting, increase 
accuracy, improve learning performance, and reduce 
computational costs (Haq et al., 2021). Feature selection procedures 
are categorized into two main types: filter and wrapper techniques 
(Abualigah & Dulaimi, 2021). Filtering techniques identify 
important features without initially classifying the data, while 
wrapper techniques focus on the most critical attributes using 
classification algorithms. Wrapper techniques are generally 
preferred over filter techniques for classification accuracy 
(Chaudhuri & Sahu, 2021). 
 
The use of swarm intelligence algorithms for feature selection has 
significantly increased. Swarm intelligence (SI) is a technique for 
modeling the collective behavior of biological groups and consists 
of multi-agent frameworks inspired by nature's swarm behaviors 
(Sun et al., 2020). It mimics the behaviors of animal herds 
competing for territory. SI has been applied to various complex 
problems, including guiding artificial intelligence, predicting social 
behaviors, and enhancing networking and telecommunications 
(Xue & Shen, 2020). The feature selection community finds SI 
appealing due to its accessibility and capability to perform global 
searches. 
Examples of swarm intelligence techniques include ant colony 
optimization (ACO), particle swarm optimization (PSO), grey wolf 
optimization (GWO), and the bat algorithm (BA), among others 
(Nguyen et al., 2020). However, feature selection alone does not 
always yield the best classification performance, especially when 
datasets contain defective or noisy data (Rabie et al., 2020). To 
optimize the efficacy of classification techniques, it is crucial to 
exclude such noisy data (Rabie et al., 2020). 
Outlier rejection, the practice of removing or discarding data that 
significantly deviates from the norm, is essential before 
classification. Many machine learning algorithms regard outliers as 
noise, which must be removed to improve the system's predictive 
capabilities. There are two types of outlier strategies: the standard 
outlier approach and the spatial outlier technique (Chambers et al., 
2020). 
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The main aim of this research is to enhance breast cancer (BC) 
classification using a deep learning (DL) based outlier detection 
algorithm. Despite numerous research efforts and methodologies, 
misclassification and lower accuracy persist in BC datasets. To 
address these issues, this study proposes the DNN-GA-ESO 
approach, which aims to improve overall BC classification 
performance. The primary contributions of this study include data 
pre-processing, feature selection, outlier identification, and the 
classification procedure. 
The ESO classification is employed for the BC dataset to more 
accurately determine whether an output class is benign or 
malignant. By utilizing efficient algorithms, the proposed technique 
yields more precise results for the specified dataset. 
 
1. Literature Review 
A considerable number of current outlier identification methods 
are based on machine learning (ML). However, some modern 
outlier detection methods based on deep learning (DL) have also 
been introduced. Chambers et al. (Amarasinghe et al., 2018) 
proposed a novel DNN-based method called DeepStreamCE, which 
utilizes deep neural network activations in a streaming setting to 
identify concept evolution. Another notable study by Munir et al. 
(2018) provides a framework for DNN-based anomaly 
identification, offering explanations for any detected anomalies. 
The developers of DeepAnT propose a DL-based solution for 
anomaly recognition (Gao et al., 2020). This method involves two 
stages: a time-series predictor module and an anomaly detection 
module. DeepAnT trains convolutional neural networks (CNN) on 
raw data without removing anomalies, using a max-pooling layer 
followed by two convolutional layers. 
In a recent study by Gómez-Flores and Hernández-López (2020), a 
CNN is proposed as a technique for using disruptions for data 
augmentation in the time series detection of abnormalities in the 
phase and amplitude spectra of the frequency domain. However, 
this approach has issues with lower convergence rates. 
Gómez-Flores and Hernández-López (Liu et al., 2020) suggested a 
CAD-assisted categorization of breast cancer (BC). They utilized 39 
morphological parameters to define breast tumor forms and help 
specify BC types. The study employed 892 mammography images 
from the BC Digital Repository (BCDR) and 2054 ultrasound 
images from the National Cancer Institute (INCa) of Rio de Janeiro, 
Brazil, for training. Morphological features, including 
elongatedness, convexity, eccentricity, circularity, and area 
variations, were extracted based on border and region descriptors. 
The AUC for both databases was determined to be 82.0%. However, 
the approach faced issues with misclassification error rates. 
 
Liu et al. (Irfan et al., 2021) introduced an edge feature extraction-
based CAD for breast tumor classification. The region of interest 

(ROI) was used to extract morphological properties such as 
roundness, aspect ratio, ellipticity, regularity, and roughness. The 
SVM classifier was used to classify images as either malignant or 
benign lesions. The proposed approach utilized 192 ultrasound 
images, including 71 cancerous and 121 benign cases. The 
technique achieved an accuracy of 67.31%, sensitivity of 47.62%, 
specificity of 80.65%, and PPV of 62.50%. 
Irfan et al. (Lahoura et al., 2021) suggested deep learning (DL) 
segmentations of ultrasonic breast lesion images using 
morphological erosions and dilated semantic segmentation 
networks (Di-CNN). The segments of the images were loaded into 
DenseNet201 with transfer learning for feature extraction. This 
research utilized 780 breast tumors. Using CNN-activated feature 
vectors combined with the SVM classifier, the method achieved an 
accuracy of 90.11%, precision of 98.45%, and a high precision of 
98.9%. However, it faced issues with overfitting. 
Lahoura et al. (Adebiyi et al., 2022) suggested an extreme learning 
machine (ELM)-based ML model for cloud-based BC 
categorization. The ELM model was applied using the AdaBoost, 
Naive Bayesian, SVM, perceptron, and k-NN methods. The dataset 
used was the Wisconsin BC Diagnosis (WBCD), comprising 32 
attributes and 569 items. The findings showed that the approach 
achieved an accuracy of 98.68%, precision of 90.54%, recall of 
91.30%, and an F1-score of 81.29%. 
 
2. Materials and Methods 
We have used a technology with a three-phase procedure for 
diagnosing cancer, as illustrated in Figure 1. In the first phase, data 
dimensionality is reduced using Hybrid Independent Component 
Analysis (HICA). This step simplifies the dataset while retaining 
essential information. In the second phase, a Deep Neural Network 
(DNN) is employed for outlier detection within the cancer dataset, 
identifying any data points that deviate significantly from the norm. 
Following this, feature selection is performed using a Genetic 
Algorithm (GA). GAs are frequently used for search and 
optimization tasks due to their efficiency in locating the optimal or 
near-optimal features in large and complex search spaces. This 
makes them particularly suitable for diagnosing cancer by 
developing models to interpret test results, especially those from 
non-invasive procedures. In the final phase, the Evolutionary 
Strategy Optimization (ESO) algorithm is utilized to determine 
whether the identified malignancy is benign or malignant. The 
effectiveness of this proposed technique has been validated using 
the Breast Cancer (BC) dataset. 
2.1. Input Cancer Dataset 
The measures of BC cases have been recorded using the BC dataset. 
BC in Wisconsin (WBC) and Wisconsin Diagnosis BC data are 
utilized to make an evaluation. It comes from the UCI data 
warehouse. There are 699 occurrences of WBC, two benign and 
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malignant classes, and 9 integer-valued properties. For the next 
step, a WDBC with 568 instances, benign and malignant classes and 
32 integer-valued properties is employed. 
2.2. Preprocessing using Improved Linear Discriminant 

Analysis (ILDA) Algorithm 
In supervised ML, a technique known as linear discriminant 
analysis can be used to streamline categorization issues. It is used 
for modelling set differences because it needs discriminating among 
two or more groups. A feature can be transferred from A single 
dimension into a space with lower dimensions using this tool. To 
increase between-class variance to within-class variation, aspects 
are downscaled from high-dimensional to low-dimensional regions 
(24). Linear discriminant analysis (LDA) is widely used in ML 
classifications (Ricciardi et al. 2020). Features are reduced in 
dimension by its capacity to limit between-class variation to within-
class variance. Thus, an improvement to LDA (Algorithm 1) is 
shown by calculating the class means and prior probability by 
merely providing the independent variables for the sample (Zhao et 
al. 2018). Each group in the dataset has its average vector 
dimensions calculated. To determine the scattering matrix, the k 
Eigenvectors with the highest Eigenvalues may be selected, and the 
Eigenvectors can be arranged in descending order to create a dk 
matrix W, involving Eigenvectors (𝑒𝑒1, 𝑒𝑒2, . . . , 𝑒𝑒𝑑𝑑) and the associated 
Eigenvalues (1, 2, . . . ,𝑑𝑑). Using the eigenvector matrix W created 
before, the data is then recreated in a new subspace. If 𝑌𝑌 =  𝑋𝑋𝑋𝑋, its 
matrix representation is simple. Each group's covariance matrix is 
computed together with the pooled one. Labeling classes and 
finding the LDA discriminant function follow. 
Algorithm 1: Improved Linear Discriminant Analysis 

1. 𝐸𝐸𝐸𝐸 =, 𝑥𝑥𝑥𝑥 𝑗𝑗 | 𝑦𝑦𝑗𝑗 =  𝑐𝑐𝐸𝐸, 𝑗𝑗 =  1,··· ,𝑚𝑚 −  1 , 𝐸𝐸 =  1, 2 
//class-specific groupings 

2. µ𝑖𝑖 =  𝑚𝑚𝑒𝑒𝑚𝑚𝐸𝐸(𝐸𝐸𝑖𝑖 ), 𝑖𝑖 =  1, 2//class means  
3. 𝐶𝐶 =  (µ1 −  µ2)(µ1 −  µ2)𝑥𝑥//between scattering 

mediums of class 
4. 𝑍𝑍𝐸𝐸 =  𝐸𝐸𝐸𝐸 −  1𝑚𝑚𝐸𝐸µ𝑥𝑥 𝑖𝑖 , 𝐸𝐸 =  1, 2//standards for the 

middle class 
5. 𝑇𝑇𝐸𝐸 =  𝑍𝑍𝑥𝑥 𝐸𝐸 𝑍𝑍𝐸𝐸 ,𝐸𝐸 =  1, 2// standards for the class 

scatter  
6. 𝑇𝑇 =  𝑇𝑇1 +  𝑇𝑇2//internal scattering 
7. 𝜆𝜆1, 𝑥𝑥 =  𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝐸𝐸(𝑇𝑇 −  1𝐶𝐶) //estimate central eigenvector 

m 
2.3. Outlier detection for removing the outliers using Deep 

Neural Network (DNN)  
A decision-making algorithm based on artificial neural networks is 
known as DNN (Adege et al. 2018) (Sun et al. 2017)). Neutrons, a 
type of neural network, comprise the DNN. A deep neural network 
has numerous hidden layers among the output and input layers, as 
implied by the name. A single input, output, and three hidden layers 
make up a deep neural network, is constructed during the DNN 

training phase to improve the abstraction characteristics for greater 
capacity. The research's DNN relies on the idea of a feed-forwards 
of artificial neural networks. Input training data is used particularly 
when characteristics in the training data are equal to neurons in 
input layer nodes (Yusuf et al. 2021). To link the output layer nodes 
to the link weights that connect the input layer (l) to the hidden 
layer nodes, weights (w) are first created using an activation 
function. Two neurons are present in the output layer nodes in 
Figure 2 for categorizing events as normal or outliers. 
Based on the results of each previous layer of the network, the ReLU 
function is used in this case as Eq (2) calculates bias (b) from 
weighted inputs for the next network layer using the activation 
function for all three hidden levels. 

𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥(0, 𝑥𝑥)        
  (1) 
Formally, equations (3) and (4) ascertain outputs of hidden layers 
inside networks: 

𝑥𝑥𝑙𝑙 = 𝑓𝑓(𝑧𝑧𝑙𝑙)         
   (2) 

𝑧𝑧𝑙𝑙 = 𝑤𝑤𝑙𝑙𝑥𝑥𝑙𝑙−1 + 𝑏𝑏𝑙𝑙        
  (3) 
The output activation function, 𝑓𝑓(𝑧𝑧𝑙𝑙), as in Eq. (2), the Relu 
function generates l, current layers, and w and b, hidden layers’ 
weights and biases. 
Completely integrated layers act as final output decision layer and 
are appropriate with sigmoid activations determined by Eq. (5). 
Sigmoid classification are is used as it evaluates representations of 
neurons as outliers in normal data. 
𝑠𝑠𝑖𝑖𝑒𝑒𝑚𝑚𝑠𝑠𝑖𝑖𝑑𝑑(𝑧𝑧) = 1

1
+ 𝑒𝑒−𝑧𝑧        

  (4) 
The data instances 𝑥𝑥 =  (𝑥𝑥1, 𝑥𝑥2 , … , 𝑥𝑥𝑁𝑁) are mapped to an outlier 
score, which indicates the probability of being an outlier, using the 
sigmoid activation function.  
According to statistics, normal instances are more likely to occur 
because they are measured more frequently, but outlier examples 
are more likely to occur since they are unusual events (Goni et al. 
2020). Since the values of probability range among (0, 1), this 
knowledge allows to distinguish among outlierness and normalcy 
when classifying data examples as outliers or normal. Particularly, 
a larger probability indicates an outlier to a greater degree. 
In Equation (6), the ε(x|θ) function takes the outliers score into 
account. 
𝜀𝜀(𝑥𝑥|𝜃𝜃) = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑧𝑧𝑖𝑖𝑘𝑘

𝑖𝑖,𝑖𝑖=1        
  (5) 
The weight of the interaction is indicated by the trainable parameter 
𝑤𝑤𝑖𝑖𝑖𝑖 , where 𝑧𝑧𝑖𝑖integrates x's ith feature values in representative space 
Z in low dimensions. DNN training steps produce models that find 
outliers and normal training data. 
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The suggested framework's detection phase is its last step. The 
unknown information is classified as either outliers or normal 
instances using the trained deep neural network model. The trained 
DNN model is then tested on the test data, and it gives an 
unseen instance an outlierness score. The final outlierness score is 
calculated using the sigmoid response vectors' cumulative 
probability. 
2.4. Feature Selection using Genetic Algorithm (GA) 

In this work, feature selection is done by using GA. As a type 
of inductive learning approach, GA offers several advantages for 
effective feature selection. It can quickly and efficiently find near-
optimal solutions in nonlinear and complicated search spaces. GA 
is a stochastic generic search technique that can efficiently comb 
across broad search spaces, which is typically necessary for selecting 
attributes. Furthermore, GAs do a global search as opposed to many 
other search algorithms' limited, greedy searches. Reproduction, 
crossover, and mutation are the three operators that make up GA 
(Rupali et al. 2021) (Alzubaidi et al. 2016). Crossover joins excellent 
strings to try to generate better children; mutation modifies a string 
locally to try to build a better string. Reproduction chooses a good 
string (subset of input characteristics). Binary bits make up the 
string: 1 denotes the attribute selection, while 0 denotes dropping 
the attribute. The population is assessed and checked for algorithm 
termination in each generation. The population is operated upon 
by the three GA operators and then reevaluated if the termination 
condition is not met. After a predetermined number of generations, 
this process is repeated. The GA is built on the ideas of "Genetics 
and Natural Selection” is utilized to determine input values using 
this output values obtained. The fittest individuals are chosen for 
reproduction using a genetic algorithm, which is a form of natural 
selection that produces children for the following generation. It 
simply serves as a method of problem-solving to offer an ideal 
response (Mishra et al. 2020).  

Figure 3 shows the nature of GA which are exchanges of bits 
by selected parents to produce offsprings. Bit counts b selected from 
parents 𝑃𝑃𝑛𝑛 with parameters: 0 < 𝑘𝑘 < 1 

       
GA algorithm pseudo code: 
Input: BC datasets  
Output: Best features 

Start  
using a random selection process to create the first population 
from the BC dataset  
Do for the designated number of generations 
Given the population's size (features), 
Using uniform probability, choose two people to be parent1 
and parent2 (the characteristics of the BC patient).  
Transition to create a new person  
alteration in a kid 

Determine the distance d1 between the child and parent1, and 
d2 between the child and parent 2. 
Determine the fitness of the following: kid, parent1, parent2, 
and f, correspondingly. 

𝑖𝑖𝑓𝑓(𝑑𝑑1 < 𝑑𝑑2)𝑚𝑚𝐸𝐸𝑑𝑑 (𝑓𝑓 > 𝑓𝑓1)𝑡𝑡ℎ𝑒𝑒𝐸𝐸 
Replace parent1 with child 
Else 

𝑓𝑓(𝑑𝑑2 <= 𝑑𝑑1)𝑚𝑚𝐸𝐸𝑑𝑑 (𝑓𝑓 > 𝑓𝑓2) 𝑡𝑡ℎ𝑒𝑒𝐸𝐸 
Replace parent2 with child. 
Feature modified step: 
Repeat 
Population feature subset 𝐹𝐹𝑚𝑚  
Generation =0; 
Loop for i from 1 to size population (do) using 𝑏𝑏 = 𝐾𝐾 ∗ 𝑃𝑃𝑛𝑛      
S1selection (population, fitness) 
S2selection (population, fitness) 
Child crossover (s1, s2) check feasibility of n element 
Child  mutate (child) check feasibility of n element 
Fitness (more relevant and important features) 
Generation = generation +1 
Until generation<max_generation 
M=m+1 
End if 
End if 
End for 
End for 

Obtain best individual solution as optimal results 
 

2.5. ESO for Brest cancer data classification 
ESO has incorporated the benefits of both techniques and 
developed a corresponding mathematical model to quantify the 
behaviours. The Great Egret's aggressive style and the Snowy Egret's 
sit-and-wait strategy drove the strategies (Chen et al. 2022). As seen 
in Figure 4, the three main components of ESO are the violent 
approach, the discriminating scenario, and the sit-and-wait 
technique. ESO is a parallel algorithm. Three egrets make up one 
squad; egret A leads the way, while egrets B and C move erratically 
and encircle. Each component is described in depth below. 
Figure 4 depicts the various characters and search choices of the 
Egret Squad. While Egret C selectively investigates according to the 
location of better egrets, On the basis of the parameters' gradient, 
Egret A will determine a descent plane and conduct a search. Egret 
B will engage in global random wandering. ESO will be better able 
to balance its exploration and exploitation efforts and conduct 
quick searches for workable solutions as a result. Because ESO uses 
both historical data and stochasticity in the gradient estimate, 
unlike gradient descent, it is less likely to reach the saddle point of 
the optimisation problem. Unlike other meta-heuristic methods,  
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Figure 1. Overall Flow of the Proposed Review Methodology 

 
Figure 2.  DNN Block for outlier detection 

 
Figure 3. Nature of genetic algorithm 
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Figure 4. The Egret Swarm Optimization Algorithm's Framework. 
 

 
 
 

 
 

Figure 5. The Detailed ESOA Search Behavior. 
 
 

Figure 6. Accuracy Comparison based on Outliers. 
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Figure 7. Comparison of approaches on WBC dataset using various metrics 
 

 
Figure 8. Comparison of approaches on WDBC dataset using various metrics 
 

 
Figure 9. Comparison of classification Accuracy using various existing and proposed method 
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Table 1. Detailed statistics for WBCD dataset(N=699) 
 

Attribute Min Value Max Value Mean Std.Dev 
Clump Thickness 1 10 4.418 2.816 
Uniformity of Cell Size 1 10 3.134 3.051 
Uniformity of Shape 1 10 3.207 2.972 
Marginal Adhension 1 10 2.807 2.855 
Single Epithelial Cell Size 1 10 3.216 2.214 

Bare Nuclei 1 10 3.545 3.644 
Bland Chromatin 1 10 3.438 2.438 
Nornmal Nucleoli 1 10 2.867 3.054 
Mitoses 1 10 1.589 1.715 
Class 1 10 Benign (458) Malignant (241) 

 
Table 2. Detailed Statisitcs for BC dataset After removing  Outliers (N=578) 

Attribute Min Value Max Value Mean Median median of the 
absolute deviation 
(MAD) 

Std.Dev 

Clump Thickness 1 10 3.855 4.012 4.550 2.529 
Uniformity of Cell 
Size 

1 10 2.451 2.651 2.989 2.589 

Uniformity of Shape 1 10 2.581 2.761 3.012 2.552 
Marginal Adhension 1 10 2.220 2.440 2.854 2.318 
Single Epithelial Cell 
Size 

1 10 2.756 2.890 3.121 1.809 

Bare Nuclei 1 10 2.77 2.910 3.212 3.186 
Bland Chromatin 1 10 3.003 3.025 3.065 2.201 
Nornmal Nucleoli 1 10 2.187 2.301 2.345 2.493 
Mitoses 1 10 1.257 1.281 1.541 2.01 
Class 1 10 Benign 

(444) 
  Malignant 

(134) 

 
Table 3. The Assessment Metric Values attained in the WBC and WDBC Data Sets 

Evaluation 
Metrics 

Existing K-Means with 
Decision Tree 
Algorithm  

UPFC with ASVM algorithm Proposed DNN-GA-ESO Algorithm 

WBC 
Value 

WDBC 
Value 

 WBC Value WDBC Value  WBC Value WDBC Value 

Classification 
accuracy (%) 

98.13 99.01 99.10 99.25 99.30 99.45 

Precision 98.2 99.0 99.24 99.26 99.35 99.44 
F-Measure 98.1 99.0 99.12 99.29 99.36 99.50 
Recall 98.1 99.0 99.01 99.33 99.42 99.53 
Kappa statistics 96.2 97.87 98 98.37 98.48 98.55 

 
Table 4. The suggested system and other BC classifiers achieved classification accuracy 

Existing Author Method Classification Accuracy (%) 

Prasad et al (2010) ACO-SVM 95.96 

Prasad et al (2010) PSO-SVM 97.37 

BichenZheng 

et al (2014) 

K-SVM 97.38 

Priya&Karthikeyan (2019) Decision tree classifier 99.01 

Existing Approach  UPFC with ASVM algorithm 99.37 

Proposed Approach  Proposed DNN-GA-ESO Algorithm 99.45 
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ESO predicts the tangent plane of the optimisation problem, 
allowing for a rapid drop to the current finest point. 

i. Sit-and-Wait Strategy  
The Snowy Egret uses 𝐴𝐴(∗) to assess the possibility of prey's 
presence in its current surroundings, given the positions of i-th 
egret squads are 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝐸𝐸, 𝐸𝐸, where n implies problems’ dimensions. 
𝑦𝑦 represents evaluations of prey in regions (Wei et al. 2023). 
𝑦𝑦𝚤𝚤� = 𝐴𝐴(𝑥𝑥𝑖𝑖)                 (6) 
The evaluation technique modified as, 
𝑦𝑦𝚤𝚤� = 𝑤𝑤𝑖𝑖 . 𝑥𝑥𝑖𝑖            (7) 
where the 𝑤𝑤𝑖𝑖 ∈  𝑅𝑅𝑛𝑛 is the weight of evaluation technique. The error 
𝑒𝑒𝑖𝑖defined as, 
𝑒𝑒𝑖𝑖 = ‖𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖‖2/2                     (8) 
Also, 𝑒𝑒𝚤𝚤� ∈  𝑅𝑅𝑛𝑛, Equation (3) allows us to reproduce the practical 
gradient of 𝑤𝑤𝑖𝑖 , whose direction is �̂�𝑑𝑖𝑖, using the partial derivative of 
𝑤𝑤𝑖𝑖 . 
𝑒𝑒𝚤𝚤� = 𝜕𝜕�̂�𝑒𝑖𝑖

𝜕𝜕𝑤𝑤𝑖𝑖
                        

= 𝜕𝜕‖𝑦𝑦𝚤𝚤� −𝑦𝑦𝑖𝑖‖2/2
𝜕𝜕𝑤𝑤𝑖𝑖

               

 (9) 

= (𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖). 𝑥𝑥𝑖𝑖   
 
�̂�𝑑𝑖𝑖 = 𝑔𝑔𝚤𝚤�

‖𝑔𝑔𝚤𝚤�‖
                (10) 

Egrets denote to superior egrets when preying, use their expertise 
to predict the behavior of prey and adding their own ideas, as shown 
in Figure 5. The directional correction of the squad's best position 
is given by 𝑑𝑑ℎ,𝑖𝑖 ∈  𝑅𝑅𝑛𝑛 , whereas the optimal location for all squads is 
given by 𝑑𝑑𝑔𝑔,𝑖𝑖  ∈  𝑅𝑅𝑛𝑛. 
𝑑𝑑ℎ,𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑥𝑥𝑖𝑖

|𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑥𝑥𝑖𝑖|
. 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑓𝑓𝑖𝑖

|𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑥𝑥𝑖𝑖|
+ 𝑑𝑑𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖                  (11) 

𝑑𝑑𝑔𝑔,𝑖𝑖 = 𝑥𝑥𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑥𝑥𝑖𝑖
�𝑥𝑥𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑥𝑥𝑖𝑖�

. 𝑓𝑓𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑓𝑓𝑖𝑖
�𝑥𝑥𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑥𝑥𝑖𝑖�

+ 𝑑𝑑𝑔𝑔𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖         (12) 

The integrated gradient 𝑒𝑒𝑖𝑖  ∈  𝑅𝑅𝑛𝑛signified as below, and 𝑟𝑟ℎ ∈
[0,0.5), 𝑟𝑟𝑔𝑔 ∈ [0,0.5): 
𝑒𝑒𝑖𝑖 = �1 − 𝑟𝑟ℎ − 𝑟𝑟𝑔𝑔�. �̂�𝑑𝑖𝑖 + 𝑟𝑟ℎ. 𝑑𝑑ℎ,𝑖𝑖 + 𝑟𝑟𝑔𝑔.𝑑𝑑𝑔𝑔,𝑖𝑖         (13) 
The method of adaptive weight updating is applied(23), 𝛽𝛽1 is 0.9 
and 𝛽𝛽2 is 0.99 
𝑚𝑚𝑖𝑖 = 𝛽𝛽1.𝑚𝑚𝑖𝑖 + (1 − 𝛽𝛽1).𝑒𝑒𝑖𝑖            (14)   
𝑣𝑣𝑖𝑖 = 𝛽𝛽1. 𝑣𝑣𝑖𝑖 + (1 − 𝛽𝛽1).𝑒𝑒𝑖𝑖2         (15) 
𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑖𝑖 −𝑚𝑚𝑖𝑖/�𝑣𝑣𝑖𝑖           (16) 
Based onEgret A's assessment of the existing condition, the site for 
the following sampling 𝑥𝑥𝑎𝑎,𝑖𝑖defined as 
𝑥𝑥𝑎𝑎,𝑖𝑖 = 𝑥𝑥𝑖𝑖 + 𝑠𝑠𝑡𝑡𝑒𝑒𝑝𝑝𝑎𝑎. exp �− 𝑖𝑖

0.1.𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
� .ℎ𝑠𝑠𝑝𝑝.𝑒𝑒𝑖𝑖         (17) 

𝑦𝑦𝑎𝑎,𝑖𝑖 = 𝑓𝑓(𝑥𝑥𝑎𝑎,𝑖𝑖)           (18) 
here t and 𝑡𝑡𝑚𝑚𝑎𝑎𝑥𝑥is the difference between the current and maximum 
iteration time, while hop is the solution space's lowbound and 
upbound. The step size factor of Egret A is 𝑠𝑠𝑡𝑡𝑒𝑒𝑝𝑝𝑎𝑎 ∈  (0, 1). The 
fitness of 𝑥𝑥𝑎𝑎,𝑖𝑖i is denoted by 𝑦𝑦𝑎𝑎,𝑖𝑖. 
2.2.2. Aggressive Strategy  
The following behavior of Egret B, which has a propensity to 
constantly look for prey 

𝑥𝑥𝑖𝑖,𝑖𝑖 = 𝑥𝑥𝑖𝑖 + 𝑠𝑠𝑡𝑡𝑒𝑒𝑝𝑝𝑖𝑖 . tan�𝑟𝑟𝑖𝑖,𝑖𝑖� . ℎ𝑠𝑠𝑝𝑝/(1 + 𝑡𝑡)       (19) 
𝑦𝑦𝑖𝑖,𝑖𝑖 = 𝑓𝑓(𝑥𝑥𝑖𝑖,𝑖𝑖)          (20) 
here 𝑟𝑟𝑖𝑖,𝑖𝑖 represents random numbers in (−𝜋𝜋/2,𝜋𝜋/2), 𝑥𝑥𝑖𝑖,𝑖𝑖 implies 
Egret B’s anticipated positions and 𝑦𝑦𝑖𝑖,𝑖𝑖 represents fitness values.  
Encircling mechanisms are used by Egrets C as revisions for their 
locations as they choose to follow their preys actively: 
𝐷𝐷ℎ = 𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖                    (21) 
𝐷𝐷𝑔𝑔 = 𝑥𝑥𝑔𝑔𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖            (22) 
𝑥𝑥𝑐𝑐,𝑖𝑖 = �1 − 𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑔𝑔�.𝑥𝑥𝑖𝑖 + 𝑟𝑟ℎ.𝐷𝐷ℎ + 𝑟𝑟𝑔𝑔.𝐷𝐷𝑔𝑔           (23) 
𝑦𝑦𝑐𝑐,𝑖𝑖 = 𝑓𝑓(𝑥𝑥𝑐𝑐,𝑖𝑖)        (29) 
𝐷𝐷ℎ  is the gap matrix among the group of egrets' present and its ideal 
position while 𝐷𝐷𝑔𝑔compares to all Egret squads' optimal location. 
𝑥𝑥𝑐𝑐,𝑖𝑖is the position of Egret C is anticipated. 𝑠𝑠𝑡𝑡𝑒𝑒𝑝𝑝𝑖𝑖 ∈  (0, 1) implies 
Egret B’s step sizes. 𝑟𝑟ℎ and 𝑟𝑟𝑔𝑔 represents random numbers in the 
interval (0, 0.5).  
2.2.3. Discriminant Condition  
The Egret squad decides on its strategy once each bird has made a 
decision, then chooses the best course of action and executes it 
collectively. 𝑥𝑥𝑖𝑖,𝑖𝑖 represents solution matrices of i-th Egret squads: 
𝑥𝑥𝑖𝑖,𝑖𝑖 = �𝑥𝑥𝑎𝑎,𝑖𝑖 𝑥𝑥𝑖𝑖,𝑖𝑖𝑥𝑥𝑐𝑐,𝑖𝑖�,              (24) 
𝑦𝑦𝑖𝑖,𝑖𝑖 = �𝑦𝑦𝑎𝑎,𝑖𝑖 𝑦𝑦𝑖𝑖,𝑖𝑖𝑦𝑦𝑐𝑐,𝑖𝑖�,                (25) 
𝑐𝑐𝑖𝑖 = 𝑚𝑚𝑟𝑟𝑒𝑒𝑚𝑚𝑖𝑖𝐸𝐸�𝑦𝑦𝑖𝑖,𝑖𝑖�,                                  (26) 

𝑥𝑥𝑖𝑖 = �
𝑥𝑥𝑖𝑖,𝑖𝑖|𝑐𝑐𝑖𝑖             𝑖𝑖𝑓𝑓     𝑦𝑦𝑖𝑖,𝑖𝑖|𝑐𝑐𝑖𝑖 < 𝑦𝑦𝑖𝑖      𝑠𝑠𝑟𝑟 𝑟𝑟 < 0.3,

𝑥𝑥𝑖𝑖                   𝑒𝑒𝑅𝑅𝑠𝑠𝑒𝑒
              (27) 

Egrets select if minimum 𝑦𝑦𝑖𝑖,𝑖𝑖 is greater than fitness 𝑦𝑦𝑖𝑖. The worst 
plan will be approved if random numbers 𝑟𝑟 ∈ (0, 1) are 30% with 
less than 0.3.𝑟𝑟 ∈  (0, 1) 
Pseudo Code  
The Algorithm 1 used to build the ESO pseudo-code has two main 
objectives: obtaining the predicted location matrix for the Egret 
squad, and to choose an improved scheme using a discriminant 
condition. ESO needsan initial matrix 𝑥𝑥0 ∈ 𝑅𝑅𝑃𝑃×𝑁𝑁 of the P size Egret 
Swarm location as input, while returning the optimal position 
𝑥𝑥𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖and fitness 𝑦𝑦𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 . 
Algorithm 1: ESO algorithm for BC classification 

Input: BC dataset: 𝑥𝑥0: the P size Egret Swarm position ∈ 
R P xN ; 
Objective function: Classifier accuracy 
Output: xbest: Optimal; ybest: Optimal fitness; 
 
Begin 
function SITANDWAIT(x) 
Update the integrated gradient 𝑒𝑒 via Eq. (9 to 13) 
Update the weight of observation method 𝜔𝜔 by Eq. (15) 
Get the expected position 𝑥𝑥𝑎𝑎 of Egret A by Eq.(17) 
return xa 
end function 
function AGGRESSIVE(𝑥𝑥𝑎𝑎) 
Get the expected feature position 𝑥𝑥𝑖𝑖  of Egret B by Eq. (19)  
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Get the expected feature position 𝑥𝑥𝑐𝑐  of Egret C by Eq. (21) 
and (22) 
return 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑐𝑐  
end function 
while 𝑡𝑡 <  𝑡𝑡_𝑚𝑚𝑚𝑚𝑥𝑥 do 

𝑥𝑥𝑎𝑎𝑖𝑖 ← SITANDWAIT(xt)  
𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑐𝑐𝑖𝑖 ← AGGRESSIVE(xt)  
Get next position (xt+1) 
end while 
return 𝑥𝑥𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖  optimal features 
Obtain higher BC classifier results 
End  

The best data for cancer detection is carried out by ESO. Here, the 
fitness value of ESO is set by a combination of different attributes 
of cancer data. Hence, the cancer data with greatest fitness among 
all possible data is chosen. Two data sets have been used with the 
ESO classification algorithm. The proposed algorithm is used for 
diagnose the cancer is either malignant or benign.  
 
3. Results 
Our research leveraged the MATLAB tool for early breast cancer 
(BC) diagnosis and performance evaluation. 
A. Dataset Description 
The BC dataset encompasses measures of BC cases recorded from 
the Wisconsin Diagnosis and Wisconsin BC (WBC) datasets, 
originating from the UCI ML data repository. The WBC dataset 
comprises 9 integer-valued attributes, 699 instances, and 2 
classifications (malignant and benign). On the other hand, the 
WDBC dataset consists of 32 integer-valued attributes, 568 
instances, and the same 2 classifications. Training and test data are 
prepared using 10-fold cross-validation (8). 
Wisconsin BC Dataset 
Table 1 presents a detailed description of the attributes included in 
the original WBC dataset, with its dimensionality reduced using 
Independent Component Analysis (ICA). Furthermore, a novel 
dataset was created by removing 120 extreme values (all malignant) 
from the original dataset, resulting in 578 instances. The statistics 
of this new dataset post-outlier removal are provided in Table 2. 
B. Wisconsin Diagnosis BC Dataset (WDBC) 
The WDBC dataset includes data for each cell nucleus, comprising 
an ID number, diagnosis (B = benign, M = malignant), and 10 real-
valued features such as compactness, area, concave points, 
smoothness, symmetry, concavity, and fractal dimension. The 
original WBC dataset employed Unified Power Flow Controller 
(UPFC) for outlier identification and ICA for dimensionality 
reduction. The resultant new dataset comprised 424 instances after 
eliminating 56 outliers and 88 extreme malignant cases from the 
original dataset. 

Figure 6 illustrates the Accuracy Comparison based on Outliers, 
presenting a comparison graph of outlier detection accuracy 
between existing and proposed methods. 
C. Performance Evaluation 
The performance of the proposed approach is thoroughly evaluated 
using datasets to ascertain its stability. Assessment metrics like 
recall, precision, F-Measure, accuracy, and kappa statistic are 
utilized to identify and evaluate the data. 
 
Accuracy is defined as the accuracy of correctly determining objects 
𝐴𝐴𝑐𝑐𝑐𝑐𝑅𝑅𝑟𝑟𝑚𝑚𝑐𝑐𝑦𝑦 = 𝑇𝑇𝑃𝑃+𝑇𝑇𝑁𝑁

𝑇𝑇𝑇𝑇𝑖𝑖𝑎𝑎𝑙𝑙 𝑛𝑛𝑇𝑇.𝑇𝑇𝑓𝑓 𝑆𝑆𝑎𝑎𝑚𝑚𝑆𝑆𝑙𝑙𝑒𝑒𝑖𝑖
     (28) 

Precision (P) is defined as determine exactness of the Classifier 
Precision (P)  = 𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃+𝐹𝐹𝑃𝑃
          (29) 

Recall (R) is defined as to calculate the sensitivity or the classifiers' 
efficiency 
Recall (R)  = 𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃+𝐹𝐹𝑁𝑁
               (30) 

F-Measure is a potential harmonic mean of recall and precision. 
𝐹𝐹 −𝑀𝑀𝑒𝑒𝑚𝑚𝑠𝑠𝑅𝑅𝑟𝑟𝑒𝑒 = 2 ∗ �Precision∗Recall 

Precision+Recall
�                

 (31) 
Where TP - True Positive, FP - False Positive, FN - False Negative, 
TN - True Negative. 
Kappa Statistic: The difference among observed and expected 
agreement is a different evaluation metric. The value is between 0 
and 1, and a value of 1 indicates full agreement. To determine the 
kappa statistic value, use equation 1. 
𝐾𝐾 = 𝑆𝑆0−𝑆𝑆𝑖𝑖

1−𝑆𝑆𝑖𝑖
= 1 − 1−𝑆𝑆𝑜𝑜

1−𝑆𝑆𝑖𝑖
                (32) 

where, 𝑝𝑝𝑇𝑇is the 10 related agreements that were recorded, and 𝑝𝑝𝑒𝑒is 
agreementprobability. 
A. Result Analysis  
A robust evaluation methodology employing 10-fold cross-
validation is employed in our study. This method entails dividing 
the dataset into 10 equal-sized sections through random sampling. 
While one section is reserved for testing, the remaining segments 
are utilized for training the base learner. This process is iterated 10 
times, ensuring that each partition is tested exactly once. 
Subsequently, individual data are aggregated based on their mean 
accuracy. The experiments were conducted using MATLAB, 
implementing the ASVM classification algorithm. The results 
depicted in Table 3 and Figure 7 underscore the efficacy of the 
categorization model in diagnosing BC. Notably, the proposed 
model achieves a classification accuracy of 99.10% and 99.35% with 
WBC and WDBC data, respectively, showcasing a highly promising 
performance compared to existing techniques. 
Table 4 provides a comprehensive comparison of various existing 
classifiers from the literature alongside the classification accuracies 
achieved using the proposed approach. 
Figure 7 juxtaposes the performance of K-Means with Decision 
Tree Algorithm, UPFC with ASVM algorithm, and the Proposed 
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DNN-GA-ESO Algorithm, utilizing diverse metrics on the WBC 
dataset such as Classification accuracy (%), Precision, F-Measure, 
Recall, and Kappa statistics. The proposed ESO method 
outperforms existing approaches, boasting a classification accuracy 
of 99.30%, Precision of 99.35, F-Measure of 0.9936, Recall of 99.42, 
and Kappa statistics of 99.48. Conversely, existing methods yield 
lower performance metrics, underscoring the superiority of the 
proposed DNN-GA-ESO algorithm in enhancing BC classifier 
performance through efficient outlier detection. 
Similarly, Figure 8 presents a comparison of the same 
methodologies on the WDBC dataset. The proposed DNN-GA-
ESO algorithm again outperforms existing methods, showcasing 
higher accuracy, precision, F-Measure, recall, and Kappa statistics. 
The utilization of the ILDA algorithm for preprocessing further 
enhances the classifier accuracy, solidifying the conclusion that the 
proposed approach significantly improves BC classifier 
performance. 
Finally, Figure 9 highlights the comparison of classification 
accuracy between the recommended DNN-GA-ESO algorithm and 
existing methodologies. The proposed algorithm achieves an 
impressive accuracy of 99.45%, outperforming other algorithms 
such as UPFC with ASVM (99.37%), Decision tree classifier 
(99.01%), K-SVM (97.38%), PSO-SVM (97.37%), and ACO-SVM 
(95.96%). This reinforces the superiority of the suggested approach 
in BC classification. 
 
4. Conclusion 
In conclusion, early detection and accurate classification of breast 
cancer (BC) are critical for effective treatment. This study 
introduces a robust classification model leveraging deep learning 
(DL) and genetic algorithms (GA) for enhanced BC diagnosis. The 
proposed DNN-GA-ESO algorithm integrates three core processes: 
outlier detection, feature selection, and classification, 
demonstrating superior performance metrics. The model achieves 
impressive classification accuracies of 99.30% and 99.45% for the 
Wisconsin BC (WBC) and Wisconsin Diagnosis BC (WDBC) 
datasets, respectively. Compared to existing methodologies, the 
DNN-GA-ESO algorithm outperforms in terms of accuracy, 
precision, F-measure, recall, and kappa statistics, as validated by 10-
fold cross-validation. These findings underscore the effectiveness of 
combining DL with evolutionary strategies for BC diagnosis, 
offering a promising tool for early detection and accurate 
classification. This advancement holds significant potential for 
improving patient outcomes and optimizing treatment strategies 
through precise and early BC diagnosis. 
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