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Abstract 
Drug repositioning is vital in cancer treatment, offering a 

swift alternative to identify existing drugs repurposable 

for cancer treatment, bypassing the lengthy and costly 

traditional drug development process. This approach not 

only saves resources for the pharmaceutical sector and 

healthcare systems but also accelerates the discovery of 

new drugs. Overcoming challenges like data integration 

and patient classification is crucial in drug repositioning, 

where methodological advancements utilizing 

randomized control trials (RCTs) become essential. RCTs 

provide a systematic way to assess medication efficacy in 

diverse cancer subpopulations, enhancing the credibility 

of drug repositioning outcomes. The current study 

integrates RCTs with advanced data analytics and 

machine learning to establish a Bayesian Network 

response detection based on randomized control (BNRD-

RC). This approach allows researchers to identify 

promising drug candidates, predict patient responses, 

and optimize treatment plans by analyzing diverse 

datasets, including genomes, proteomics, and clinical 

records. Beyond personalized treatment, drug 

repositioning explores medication synergy and  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

combination therapy for rare cancer types. Simulation 

analysis significantly aids in validating the efficacy and 

safety of repositioned drugs. Through simulations of 

clinical scenarios and treatment outcomes, researchers 

can assess the impact of drug repositioning on patient 

survival, quality of life, and healthcare costs.  

Keywords: Drug Repositioning, Response Detection, Randomized Control, 

Cancer Treatment 

 

1. Introduction 

Drug repositioning and response detection in cancer treatment 
pose significant challenges during randomized controlled trials 
(RCTs) (Hernández-Lemus, 2021). While RCTs are the gold 
standard for assessing drug efficacy, applying them to drug 
repositioning encounters various issues (Orecchioni, 2019). The 
complexity and diversity of cancer make it difficult to generalize 
RCT outcomes to all patient populations (Zhou, 2020). Accurate 
patient stratification becomes challenging due to potential 
differences in mechanisms of action for repositioned medications 
in cancer compared to their original indications. Retrospective 
studies with small sample sizes may lack statistical power and fail 
to represent the spectrum of cancer cases (Nowak-Sliwinska, 
2019). 
RCTs are susceptible to bias and confounding, leading to 
potentially misleading inferences (Begley, 2021). Regulatory 
requirements for substantial clinical trial data in repositioning 
medication approvals pose ethical dilemmas when routine therapy 
is withheld (Pushpakom, 2019). The dynamic nature of cancer 
over time is not fully captured by RCTs (Reay, 2021). To address  
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these challenges, researchers explore real-world data, biomarker-
driven trials, and adaptable study designs that account for new 
medications and evolving cancer landscapes (Mousavi, 2020). 
While RCTs remain crucial, addressing the variability of the 
disease, complexities in patient selection, and limitations of 
retrospective research in drug repositioning for cancer demands 
innovative approaches (Shukla, 2021). In light of RCT findings, 
several methods have emerged for drug repositioning and 
response detection in cancer treatment: 
Standard randomized controlled trials (RCTs) involve dividing 
patients into two groups: one receiving the regular medication and 
the other the repositioned drug (Tanoli, 2021). The comparison of 
effectiveness and safety results between these groups informs the 
study. However, traditional RCTs face challenges related to patient 
selection, ethical concerns, and limited sample sizes (Kingsmore, 
2020). 
Adaptive RCTs offer flexibility by allowing researchers to alter the 
trial's design, adjusting the proportion of patients in each 
treatment arm or eliminating ineffective arms (Cheng, 2019). 
Successful implementation requires careful planning and 
management, optimizing resource allocation and integrating 
emerging data trends (Zhang, 2020). 
Basket trials include patients with diverse cancer histologies but a 
common genetic mutation, while umbrella trials focus on a single 
histology with varied genetic profiles (Yang, 2022). These trials 
address cancer heterogeneity by guiding personalized treatment 
based on genetic markers, enhancing the precision of medicine 
selection (Jin, 2012). 
Biomarker-driven trials predict patient responses to repositioned 
medications using biomarkers. Stratifying patients based on these 
indicators improves the chances of identifying clinically relevant 
treatment responses (Vivarelli, 2020). 
In drug repositioning and response detection for cancer treatment 
using RCTs, stringent patient selection criteria are essential due to 
potential differences in mechanisms of action for repositioned 
pharmaceuticals (Lee, 2016). Ethical concerns arise when patients 
are denied regular medications for experimental repositioning 
drugs. Small sample sizes and patient heterogeneity may reduce 
the statistical power of RCTs, and capturing long-term therapy 
effects is challenging due to the evolving nature of cancer and its 
genetics (Nagaraj, 2018). Despite being necessary, RCTs for 
repositioned medications can be costly and time-consuming due 
to regulatory requirements for substantial data. Nevertheless, they 
remain crucial for advancing medication repositioning in cancer 
treatment (Cheng, 2017). 
Our review aims to streamline cancer drug repositioning, a 
strategy repurposing existing drugs for cancer treatment, 
expediting drug development and saving time and resources. 
Using randomized controlled trials (RCTs), advanced analytics, 

and machine learning, we establish a robust Bayesian Network 
response detection approach (BNRD-RC). This method identifies 
potential drug candidates, predicts patient reactions, and 
optimizes treatment regimens, enhancing drug repositioning's 
credibility and efficiency. The research also explores broader 
applications, investigating drug synergy and combination 
treatments for rare cancers. Simulation analysis verifies the 
efficacy and safety of repositioned medications, assessing their 
impact on patient survival, quality of life, and healthcare 
expenditures. 
The paper discusses existing techniques for RCTs in cancer 
treatment (Ioakeim-Skoufa, 2023). Section 3 introduces a new 
method for detecting responses in Bayesian networks, termed 
Bayesian Network response detection with randomized controls 
(BNRD-RC). Section 4 analyzes the results, and Section 5 
concludes based on the analysis. The comprehensive approach 
focuses on identifying repositioned drugs, optimizing their usage, 
and examining their consequences in cancer care, marking a 
significant advancement in drug repositioning. 
 
2. Literature Review 
This review provides a comprehensive insight on the potential of 
repurposing medications developed for Type 2 Diabetes Mellitus 
(T2DM) to treat other diseases, such as cancer, neurological 
disorders, and cardiovascular diseases (Ferrari & Lüscher,2016). 
The use of computational technology, particularly machine 
learning approaches, has accelerated the process of drug 
repositioning (Ashburn et al,2004). The article highlights the 
success stories of drug repositioning based on knowledge and 
molecular characterization of diseases. It also addresses the 
disappointing clinical outcomes of treatment approaches targeting 
the tumor microenvironment (TME) and explores the potential of 
combination therapies. 
The development of measures like structural topological networks 
(STN) assists in identifying connections between drugs and 
diseases, facilitating drug repositioning efforts (Pushpakom et 
al,2019). The challenges in treating glioblastoma (GBM) are 
discussed, emphasizing the potential of repurposed drugs due to 
their simplicity in clinical transfer ( Ekins et al, 2016).The 
suggested method, Bayesian Network response detection based on 
randomized control (BNRD-RC), is highlighted as a promising 
approach for drug repositioning and response detection, 
particularly in the context of T2DM and its potential repurposing 
for other medical disorders ( Karimi et al, 2019).  
The scientists and medical practitioners have enormous interest in 
repurposing medications developed for Type 2 Diabetes Mellitus 
(T2DM) for other diseases, such as cancer, neurological disorders, 
and cardiovascular diseases, has grown. Zhu, S., et al. (2022) 
developed drugs for T2DM, sparking extensive research into their 



ANGIOTHERAPY                                    REVIEW 
 

https://doi.org/10.25163/angiotherapy.729394                                                                                            1–13 | ANGIOTHERAPY | Published online Dec 4, 2023 
 

potential repurposing. Recent advancements in computational 
technology, particularly machine learning, have accelerated the 
drug repositioning process. 
Knowledge-based success stories (K-SS), as proposed by 
Scherman, D. et al. (2020), exemplify how medicines have been 
repurposed beyond their initial intent, often based on molecular 
characterizations of the respective diseases. Chance discoveries 
and purposeful molecular characterizations have contributed to 
successful repositioning. 
Jin, M. Z. et al. (2020) suggested the tumor microenvironment 
(TME) as a target, but clinical success has been limited. 
Medications with anticancer activity are being explored for 
combination therapy, and the article discusses the potential future 
applications of TME theory. 
Structural Topological Networks (STN), developed by Badkas et 
al. (2021), have helped uncover previously unknown connections 
between drugs and diseases, aiding in drug repositioning efforts. 
The article emphasizes the need for broader application efforts, 
particularly in drug repositioning. 
Lyne, S. B. et al. (2021) established treatments for glioblastoma 
(GBM), but challenges like high costs and failure rates hinder 
further development. Repurposed drugs show promise for 
evaluation in patients, with different classes of drugs 
demonstrating effectiveness against preclinical GBM models. 
The proposed Bayesian Network Response Detection based on 
Randomized Control (BNRD-RC) method emerges as a viable 
approach for drug repositioning and response detection. This 
systematic and powerful framework is especially relevant in the 
context of T2DM and its potential repurposing for other medical 
disorders ( Korotcov et al. 2017). 
 
3. A novel approach to drug positioning 
Randomized controlled trials (RCTs) are crucial tools in the 
proposed approach for drug repositioning and response 
monitoring in cancer chemotherapy, aiming to identify innovative 
treatments and enhance patient well-being ( DiMasi, et al,2016). 
The process involves creating an archive of RCTs related to cancer 
therapies, covering a broad spectrum of medical treatments. 
Subsequently, powerful machine learning and data mining 
techniques analyze trial findings to identify potential medications 
with yet-to-be-established anticancer qualities ( Jardim et al,2016). 
Patient-specific information, including genetic profiles, diagnostic 
criteria, and treatment results, is utilized for medication efficacy 
assessment. Patients are categorized based on their vulnerability to 
drugs using algorithm predictions, paving the way for the 
development of more personalized treatments ( Ribeiro et 
al,2018). This process leverages prior RCT results and individual 
patient therapy to expedite drug repositioning and enhance cancer 
therapy. 

Pharmacological and surgical sterilization have been successful 
treatments for malignancies spreading beyond the initial site, 
while androgen-absence treatment (ADT) is an option for larger 
and resistant tumors (Fizazi et al, 2012). Castration-resistant 
prostate cancer (CRPCA) occurs when cancer cells continue 
aggressive growth despite ADT (Gravis et al,2013). Figure 1 
illustrates current prostate cancer therapies, emphasizing that 
hormonal therapy is not curative but may be effective. Anti-
androgen-driven hormonal control is initially applied for 
metastatic malignancy, but resistance is a concern ( Glass et 
al,2003). The efficacy of hormonal therapy in reducing tumor size 
and preventing growth remains uncertain, impacting recipients' 
lifespan and quality of life. Understanding the mechanisms of 
chemotherapy resistance is crucial to protect individuals from 
adverse consequences and identify those not benefiting from 
therapy. When cancer tissue develops resistance to medication, 
seeking new treatment strategies becomes essential. CRPCA 
tolerance mechanisms, such as amplified allergic reactions (Fizazi 
et al, 2012), AR genetic changes, synergistic stimulants, 
testosterone-independent AR triggering, and progesterone 
synthesis, are illustrated in Figure 1. The low solubility of certain 
cancer drugs in water poses risks of toxicity, formation, and 
immunity. Chemo ineffectiveness often results from multiple drug 
resistance, and non-selective anticancer drugs can lead to 
significant adverse reactions ( Loblaw et al,2010). Prostaglandins 
(PGs) and thromboxanes (TxAs) rely on the presence of amino 
acid (AA) at this stage. Enzymes like luminal and cytoplasmic A2 
are activated by signals within the cellular environment, breaking 
down amino acids into free AAs (Fig. 2). The oxidation process by 
cyclooxygenases (COXs) produces prostaglandin G2 when AA 
release activates COX processes. Subsequently, oxidase transforms 
it into hydrogen (PGH2) (Fig. 2a), acting as a substrate for cell 
enzymes to produce active PG substances like prostaglandin D2, 
prostaglandin E2, prostaglandin F2, prostacyclin I2, and 
thromboxane A2 ( Li et al,2018). Previous evidence highlights the 
role of chemicals from cyclooxygenase-2 (COX-2) in allergic and 
painful responses, enhancing local circulation, vessel permeability, 
cell infiltration, and heat during the AA cascade ( Banno et 
al,2015). Conversely, proteinases from cyclooxygenase-1 (COX-1) 
play vital roles in maintaining the normal operation of the 
gastrointestinal mucosa barrier, urinary bladder, and neutrophils. 
According to kern et al (2002) The accidental inhibition of COX-1 
during prolonged NSAIDs medication, leading to a significant 
drop in gastroprotective PGs, results in serious health 
complications, causing approximately 15.3 deaths per 100,000 
individuals in Europe ( Simon et al,1999). These concerns drive 
scientists to seek novel strategies to address and prevent disorders 
caused by COX activation. Inhibiting stimulated COX is 
considered effective as it hinders the synthesis of inflammation- 
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Figure 1. Phased approach to Prostate Cancer (PCA) treatment. 
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Figure 2. Prostaglandin production via cyclooxygenase (COX)-1 and - 2 isoform catalysis from membrane-bound arachidonate. 
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promoting PGE2 while preserving the synthesis of 
gastroprotective chemicals unaffected by habitual COX ( Saxena et 
al,2020). To produce selective COX-2 inhibitors, understanding 
the structure of COXs was crucial. Research revealed that the 
locations interacting with inhibitors in COX-1 and COX-2 were 
structurally identical and highly stable ( Curry et al,2019). By 
altering one amino acid in COX-2 (Val to Ile), its inhibitory effect 
shifted from resembling COX-2 to that of COX-1 for COX-1 
selective inhibitors. This indicates that the presence of Val at 
location 509 creates space for selective electrostatic bonds among 
molecules, fitting into the enzyme's active site (Fife et al,.2004). 
During the process of transformation and renewal, Cancer Stem 
Cells (CSCs) are believed to originate from established adult cells, 
localized stem cells, or embryonic stem cells. Various factors, 
including illnesses, harmful substances, or treatments like 
chemotherapy, can trigger or accelerate this conversion during 
tissue regeneration (Rosen and Jordan, 2009). The uncontrolled 
proliferation resulting from oncogenic amplification and 
inactivation of cancer suppressors leads differentiating cells to 
disintegrate and acquire stem cell traits (Kelly et al., 2007). Due to 
their unlimited proliferating capacity, embryonic cells and their 
descendants are particularly susceptible to mutation and irregular 
cell division with even minor changes in their genome. Given their 
high immunity, Cancer Stem Cells (CSCs) evade conventional 
cancer therapy, suggesting inevitable metastasis and tumor 
regrowth. Combining targeted removal of CSCs with standard 
radiation therapy enhances effectiveness and outcomes by 
significantly reducing tumors due to CSCs' remarkable 
adaptability ( Mani et al., 2008). Identifying distinct CSC surface 
markers and profiling CSCs from prevalent tumor populations 
facilitates the development of focused approaches for CSC 
elimination. This study underscores the potential of targeting 
cancer-causing cells as a treatment option for various 
malignancies ( Singh et al., 2003).  Tumor growth and recurrence 
are attributed to CSCs' genetic makeup, characterized by self-
sustaining abilities, differentiation into specialized cell types, 
tumor spread, and metastases ( Clevers, 2006). CSCs possess a 
fundamental self-renewal characteristic, generating both 
additional stem cells and more differentiated tissue through 
asymmetric multiplication. Regulating this regenerative property 
presents a potential therapeutic avenue, as CSCs' inclination for 
regeneration is a significant factor in tumor formation. CSCs can 
develop into specific cell categories and morph into various cell 
types, regulated by pathways associated with Wingless integrating 
site (Wnt), Sonic Hedgehog (Hdhg), and Patch, contributing to 
self-regeneration and diversification. 
Carcinoma occurs when cancerous tumors spread from their 
original site to other organs or tissues through the blood or lymph 
systems. Accumulated mutations, resulting from changes in 

cancer-causing genes that suppress tumors ( Hoey et al., 2009) and 
proteins involved in DNA repair pathways, lead to unchecked 
growth and cancer. Without medical intervention, the disease 
progresses, and the body initiates a metastatic cascade, increasing 
the chances of survival. Despite medical care, Cancer Stem Cells 
(CSCs) can contribute to tumor resurgence due to their resistance 
capabilities ( Ginestier et al., 2010). The activation of Epithelial-
Mesenchymal Transition (EMT) promotes the spread of tumor 
cells, and CSCs play a significant role in this process. By creating a 
conducive growth environment that facilitates blood vessel 
formation, cancer cells influence metastatic cascades through 
connections to the biological components of the tumor's 
surrounding environment ( Card et al., 2008). Effective tumor 
treatment relies heavily on targeted interventions in specific cell 
signaling pathways believed to influence cancer progression ( Lin 
et al., 2008) , as well as the regenerative mechanisms of cancer 
origins and the maturation capacity of CSCs in the emergence of 
differentiated tumor tissue ( Yu et al., 2007). This section briefly 
explores some of the key aspects illustrated in Figure 3. 
An intricate biological mechanisms of chemotherapy resistance is 
shown in Figure 4. For tumor-fighting drugs, including those 
considered inherently cancer-promoting, to be effective in clinical 
trials ( Lin et al., 2008), they typically require chemical activation 
through the CYP cytochrome P450 system, the glutathione-S 
(GST) superfamily, or the urea kinase (UGT) superfamily (Chin et 
al., 2009).  However, malignancies and Cancer Stem Cells (CSCs) 
may develop resistance to chemotherapy due to mutations altering 
their metabolic capabilities, reducing the drug's effectiveness ( 
Martinez & Gregory, 2010). Changes in cell-killing proteins, such 
as the cancer-fighting gene p53 (TP53), present another avenue for 
developing tolerance through drug deactivation. Half of tumors 
carry TP53 variants rendering it nonfunctional, leading to cancer 
resistance ( Takamizawa et al., 2004). In chemoresistance, 
inhibitors of p53, including apoptotic proteolysis activation factor 
1 (Apaf-1) and caspase-9, are compromised (Li et al., 2008). 
Certain chemotherapy drugs target DNA, inducing apoptosis 
through deleterious chromosomal crosslinks, as seen with 
Cisplatin. However, resistance can emerge if drug targets undergo 
modified treatment consequences due to mutations or altered 
expression levels (Zielske et al., 2011). Ovarian tumors develop 
tolerance to the chemotherapeutic drug Taxol due to 
polymorphisms in biological targets like beta-tubulin. High levels 
of the membrane proteins MRP1 in neuroblastoma and BCRP in 
small-cell lung cancers (Marson et al., 2008), also exhibited by 
stem cells, contribute to drug resistance. The efflux system, 
primarily involving ABC transporters, serves as a protective 
mechanism by removing drugs and toxins from healthy cells ( 
Clevers, 2006). Nonetheless, it acts as a drug resistance process for 
malignancies, shielding cancer cells and CSCs from various first- 
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Box 1. Algorithm on Drug Repositioning and Response Detection 

 
Input: two drug source images:D1, D2. 
Step 1 : Remove reliance on a single source for image input pixels. 
Step 2: Create a new matrix M by transforming each image into a set of column vectors. 
Step 3: Determine A-Score using the formula. 
Step 4: Produce a probability value of eigenvalues and a full matrix  whose columns are the correspond eigenvectors. 
Step 5: Learn how to calculate the fused weight by following these steps 
Step 6: if ((D1) > D(2)) 
Step 7: D1 =   /  
Step 8: else 
Step 9: D2 =  /  
Step 10: Combining two separate photos into one using the following calculation technique 
Step 11: T = D1+ D2 
Output: Tumored image T. 
 

Figure 3. The cancer stem cell 
hypothesis and therapeutic strategy. 
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Figure 4. Chemical resistance mechanisms. 
 
 

 
 

Figure 5. Resistance to 
treatment and spread of 
cancer in part to CSCs. 
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line chemotherapy drugs (Chiba, 2006). To counteract drug-
induced DNA destruction, activities influencing the DNA repair 
processes of nucleotide excision and recombination between genes 
may reverse the therapeutic effects of chemotherapy ( Lapidot et 
al., 1994). 
Therefore, it is suggested that making chemotherapy more 
efficient involves combining it with the inhibition of repair 
mechanisms. Cell death is regulated through various means, 
including apoptosis and autophagy. Alterations in the expression 
and control of apoptotic pathways can enhance susceptibility to 
anticancer drug therapies that induce cell destruction ( Houbaviy 
et al. 2003). 
Cancer stem cells (CSCs) exhibit resistance to chemotherapy and 
radiation, playing a crucial role in various cancers, including 
pancreatic, breast, colon, and brain cancers. Recent research 
focuses on CSCs, revealing their role in producing progenitor cells 
that contribute to cancer spread and relapse despite treatment. 
Genetic drugs targeting progenitor cells can reduce metastases. 
Understanding how CSCs contribute to drug tolerance improves 
chemotherapy efficacy and reduces relapses ( Rosen & Jordan, 
2009) Figure 5 outlines mechanisms through which CSCs resist 
therapy and promote cancer spread, responding to and 
influencing the tumor microenvironment. Various elements in the 
CSC habitat, such as endothelial cells, immune cells, and growth-
promoting agents, support CSCs' primitive nature ( Takahashi & 
Yamanaka, 2006). Hypoxia in the tumor environment sustains 
CSCs, linked to malignant recurrence and resistance to multiple 
drugs through HIFs (hypoxia-inducible factors). HIF-2 and Oct4 
play roles in CSC self-sustainment, while Sox2 modulates Oct4 
levels. Oxygen deprivation protects CSCs by reducing reactive 
radicals, promoting cancer proliferation and resistance to 
therapies. HIFs influence pathways to maintain CSCs in a 
dormant phase ( Reinhart et al., 2000).  
Cancer stem cells (CSCs) efficiently produce protein transporters, 
with cancer cell markers like adenosine (ALDH) reducing 
oxidative damage and enhancing resistance to taxanes and 
rhodium-based treatments (Lapidot et al., 1994). ALDH also 
provides protection against radiation by neutralizing harmful 
substances from exposure. DNA damage and apoptosis are 
common effects of chemotherapy and radiation, but CSCs activate 
DNA repair pathways, ensuring their survival ( Celia-Terrassa et 
al., 2012). Epithelial-mesenchymal transition (EMT) in cancer 
involves cells losing their properties, driven by various signals like 
growth factors and hypoxia. Tumor cells in multiple EMT stages 
are more invasive, pass through collectively, and express mixed 
genes ( Zhao et al., 2010). The proposed role of EMT in cancer 
progression and metastasis emphasizes the importance of 
understanding its influence for effective cancer treatment. 

Overall, Cancer stem cells (CSCs) exhibit resilience to 
chemotherapy and radiation, playing a significant role in various 
cancers. Suspected of causing drug resistance in pancreatic, breast, 
colon, and brain cancers, CSCs are a focus of recent research. 
Despite treatment and cancer cell destruction, CSCs contribute to 
metastasis and relapse ( Marson et al., 2008).. Figure 5 illustrates 
mechanisms of CSCs resisting therapy and promoting cancer 
spread. Understanding CSCs' role in drug tolerance aids improved 
cancer treatment. CSCs influence the tumor microenvironment, 
facilitating growth, differentiation, and resistance to therapies like 
chemotherapy and radiotherapy. Factors like hypoxia, cytokines, 
and tumor-fighting drugs contribute to epithelial-to-mesenchymal 
transition (EMT), influencing tumor progression and resistance to 
chemotherapy. An improved understanding of EMT's role is 
crucial for effective cancer treatment ( Diehn and Clarke, 2006).  
 
Drug repositioning and response detection based on algorithm 
Utilizing randomized control trials (RCTs) for cancer treatment, 
the equation for drug repositioning and response detection can be 
expressed as follows: 
Drug Repositioning = f (RCT Data, Machine Learning, Patient-
specific Information) 
This equation involves leveraging RCT data, employing machine 
learning techniques, and considering patient-specific information 
to identify new and effective drug positions for cancer treatment 
while monitoring treatment responses. 
Researchers developed an algorithmic approach to repurpose 
medicines for new therapeutic uses by analyzing connections 
between drugs and diseases. Ratings ranging from +1 to -1 
indicate the effectiveness of each medicine-disease combination. If 
a medication's most negative rating corresponds to a different 
group of modifications in response to exposure, it may have 
therapeutic potential. Some studies shows the drug similarity 
scores calculated using CMap drug expression patterns and 
preconditioned expression data for prostate and breast tumors 
(Lin et al,2015). The analysis focused on drugs with p-values below 
0.05 after correction for false discovery rate (FDR) (Omura et 
al,2004). The items were then categorized based on enhancement 
ratings, with the most significant negative score indicating 
promising therapeutic possibilities. Validation of medication 
repurposing used sensitivity-dependent validation (SV) and the 
normalization discounting cumulative gain (OHED) (Iorio et 
al,2010). OHED scores were calculated using specific formulas, 
emphasizing the importance of sensitivity in analytical 
verification. Top-ranked medications were considered more 
interesting for therapeutic use. 
Researchers also explored specific medications that could 
counteract the adverse effects of diseases. For instance, some 
algorithms use A-score, representing chemical bonds between a 
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medication and adjacent DE genes, was calculated and 
transformed into a probability value using standard deviation (Ren 
et al,2010). The Drug Repositioning and Response Detection 
algorithm involved creating a new matrix, determining A-Score, 
and calculating fused weights for comparing and combining 
images. Gene rankings were calculated using PageRank, and 
equations blended the differential expression of genes in illness 
and medication-related pathways (Smyth et al,2005). The 
PageRank algorithm, a modification of the random walk 
algorithm, was employed to assess network centrality. Damping 
values were experimented with, and 0.75 was determined as the 
ideal amount.  
 
4. Use of Bayesian Network response detection in randomized 

control trials 
When using Bayesian Network response detection in randomized 
control trials (RCTs), assessing robustness and reliability is crucial 
(Balshem et al,2011.). Sensitivity analysis systematically evaluates 
how changes in input parameters impact the network's structure, 
predictions, and response detection. This analysis helps 
understand response detection conditions, validate findings, and 
identify model limitations, contributing to a comprehensive 
understanding of uncertainties for better decision-making. 
Bayesian Networks for RCT-based response detection incorporate 
inference and prediction as core components (Guyatt et al,2013 ). 
Bayesian inference deduces probabilistic correlations between 
variables using observed data and prior knowledge, calculating 
posterior probabilities for likely response outcomes and influential 
factors. Predicting future responses enhances the practicality of 
Bayesian Networks, allowing better selection of patients for 
treatment strategies and contributing to personalized medication 
plans. This foresight improves cancer treatment accuracy, leading 
to better patient outcomes and more efficient healthcare resource 
utilization. 
Sensitivity analysis is an essential tool for evaluating the 
robustness and reliability of Bayesian Network response detection 
models in RCTs (Newton et al,2007.). It involves systematically 
adjusting input parameters to observe changes in the network's 
structure, predictions, and response detection results. The goal is 
to determine how small changes in parameters affect the model's 
output, enhancing understanding of factors influencing response 
detection, ensuring findings' consistency, and identifying model 
flaws. 
Different factors are essential to optimize the Bayesian Network 
response detection. Accuracy is a key performance indicator for 
Bayesian Network response detection in RCTs. Evaluating 
prognostic accuracy involves comparing the model's forecasts with 
actual RCT results. Other performance parameters, such as 
sensitivity, specificity, positive predictive value, and negative 

predictive value, contribute to a comprehensive evaluation ( Tang 
et al,2012). Considering these measures alongside accuracy 
provides a more robust assessment of the model's efficacy, leading 
to more reliable cancer treatment regimens. Conditional 
probability plays a vital role in Bayesian Network response 
detection using RCT data. It enables probabilistic reasoning by 
quantifying the likelihood of treatment success based on specific 
variables within the network. Conditional probability allows for 
personalized medicine, as it considers a patient's unique profile 
and influencing factors in treatment response ( Spiegelhalter et 
al,1993). This paradigm optimizes treatment regimens and 
improves patient outcomes in the context of RCT-based Bayesian 
Network response detection. Causal inference analysis is crucial 
for Bayesian Network response detection in RCTs, exploring 
causal links between variables to understand determinants of 
treatment response. This goes beyond simple correlation methods, 
providing insights into underlying causal mechanisms and 
allowing for more targeted and efficient cancer treatment plans. 
Bayesian Networks, with their inference and prediction 
capabilities, offer a powerful framework for RCT-based response 
detection (Assareh et al,2011). These models enhance decision-
making, improve treatment accuracy, and contribute to the 
advancement of personalized medicine in cancer therapy. 
 
5. Conclusion 
Drug repositioning is a transformative shift with profound 
implications for healthcare and pharmaceutical industries, 
particularly in cancer treatment. Quickly identifying existing drugs 
for repurposing in the fight against cancer is crucial, and drug 
repositioning offers a rapid and cost-effective solution. Traditional 
drug development faces challenges of lengthy timelines and high 
costs, necessitating alternative strategies. Overcoming the 
challenges of drug repositioning requires integrating diverse data 
sources, precise patient classification, and developing reliable 
response detection algorithms. To address these challenges, this 
review highlights the strength of randomized controlled trials 
(RCTs) to assess medication effectiveness in different cancer 
subpopulations. RCTs provide a structured and systematic 
framework for evaluating and discovering new drug candidates. 
By combining RCTs with modern data analytics and machine 
learning, the study introduces the Bayesian Network Response 
Detection based on Randomized Control (BNRD-RC). This 
approach not only predicts patient responses and refines 
treatment regimens but also unveils potential new avenues for 
cancer treatment. It expands drug repositioning by examining 
pharmaceutical synergy and combination therapy for rare cancers. 
Simulation analysis plays a vital role in validating the placement of 
drugs, evaluating treatment outcomes, and assessing simulated 
clinical scenarios. This comprehensive approach allows for a 
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holistic understanding of the potential benefits and risks of drug 
repositioning in cancer treatment. The integration of drug 
repositioning with RCTs, advanced analytics, and simulation 
analysis marks a pivotal moment in cancer therapies. It has the 
potential to revolutionize treatment, enhance patient outcomes, 
and optimize healthcare spending, while also accelerating the drug 
discovery process. 
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