

Artificial Intelligence in Financial Analytics and Predicting Market Trends and Risk Management

Ispita Jahan^{1*}, Md Sakib Mia², Niladry Chowdhury², Md Iqbal Hossain³, Anik Biswas⁴

Abstract

Background: Artificial Intelligence (AI) is transforming financial analytics through its ability to improve market trend forecasts and risk management at increased speeds. Modern global market complexity exceeds traditional analytical capabilities so financial institutions now rely on AI tools that include machine learning (ML) and deep learning (DL) together with natural language processing (NLP). **Methods:** The research involved 100 financial professionals who were randomly chosen to participate in a survey which examined AI implementation within financial operations. The questionnaire measured AI deployment levels and evaluated forecasting precision and risk management effects as well as user concerns. The study interpreted the data through descriptive statistics and correlation analysis. **Results:** 68% of survey participants indicate they use AI-based financial analysis tools at present. A majority of respondents (62%) reported improved forecasting outcomes, while 85% agreed that AI positively contributes to financial risk reduction. The analysis showed a strong positive association between AI adoption and financial performance improvement where the correlation coefficient measured +0.74. Most participants expressed their worries about the transparency of models together with

Significance | AI continues to transform finance through its growth in forecasting and operational efficiency and risk management in its adoption process.

*Correspondence. Ispita Jahan, Department of Business administration, Midwestern state university, Wichita Falls, United States.
Email: ispitajahan999@gmail.com

Editor Shafiqul Islam, Ph.D., And accepted by the Editorial Board Oct 15, 2025 (received for review Aug 05, 2025)

explain ability and regulatory compliance concerns. **Conclusion:** The research indicates financial analytics users recognize that artificial intelligence produces measurable advantages for market forecasting together with risk management processes. The robust connection between financial performance and AI adoption shows that AI continues to gain strategic importance within financial operations even though regulatory and interpretability issues remain.

Keywords: Artificial Intelligence, Financial Analytics, Market Prediction, Risk Management, Machine Learning, Business Analytics

1. Introduction

The world financial system has gone through rapid transformations during the last few decades because of technological advancement. The financial sector has witnessed Artificial Intelligence (AI) integration as one of its most transformative recent technological advancements (Alsaadi et al., 2024). The growing complexity of global markets along with expanding data volumes and market fluctuations make traditional financial models inadequate for delivering quick precise decisions. Through its analytical capabilities AI enhances financial analyst effectiveness along with investor results and institutional business functions (Vyas, 2025). The AI system employs machine learning (ML) alongside deep learning (DL) and natural language processing (NLP) to analyze large volumes of information which enables it to identify immediate patterns and develop exact forecasts. Financial analytics heavily depends on I for multiple purposes. The fundamental part of I

Author Affiliation.

¹ Department of Business administration, Midwestern state university, Wichita Falls, United States.

² Department of College of Graduate and Professional Studies, Trine University, Angola, Indiana, United States.

³ Department of Management Information Systems, University of Bridgeport, CT, United States.

⁴ Department of College of Graduate and Professional Studies, Trine University, Detroit, Michigan, United States.

Please cite this article.

Jahan, I., Mia, M. S., Chowdhury, N., Hossain, M. I., Biswas, A. (2025). "Artificial Intelligence in Financial Analytics and Predicting Market Trends and Risk Management", Journal of Ai ML DL, 1(1), 1-8, 10385

extends to asset evaluation and portfolio control alongside fraud detection and risk reduction and market prediction (Gandhi, 2024). Modern financial institutions depend on algorithmic trading platforms which use AI to process massive data volumes for automatic trade execution. AI-based credit scoring systems are becoming more common because they evaluate customer actions and financial patterns and social information better than traditional scoring systems. AI plays a vital role in finance through its ability to predict market trends (Battula, 2025). The standard forecasting methods rely on past data along with basic patterns yet they struggle to perform well in today's connected global markets. The limitations of traditional models vanish through AI systems which identify complex patterns and connect present-time data and market changes. AI systems analyze news articles and tweets together with economic reports and other unstructured data to generate prompt evaluations about investor emotions and market developments (Shawaqfeh, 2025). Real-time analytics tools help institutions reach better decisions at higher speeds which results in superior performance in quick-moving markets. Risk management has undergone a substantial transformation through the implementation of artificial intelligence technologies.

The finance sector relies heavily on AI to provide methods that build sophisticated hypothetical models while running stress tests and identifying upcoming threats prior to their materialization. The capability of AI systems to handle credit risk together with operational risk and market risk offers superior flexibility compared to traditional tools (Pillai, 2023). Machine learning algorithms detect abnormal transaction patterns which lead to the identification of fraud so financial losses and reputation harm can be avoided. Through the analysis of various variables AI-powered risk models generate default probabilities and economic downturn predictions which enable organizations to take preventive steps with their strategies (Dahiya et al., 2024). The study collected data from analysts together with institutional staff and individual investors to understand how AI is perceived and used across the sector. The research investigated several essential aspects including AI implementation levels together with advantages alongside difficulties and future outlooks (Rane et al., 2024). Descriptive statistics along with correlation analysis were used to examine survey data which showed connections between AI utilization and financial results. The initial findings show that many participants use AI tools during their everyday work activities. Several respondents experienced better forecasting results along with better financial risk control through AI tools. AI implementation showed a direct link to enhanced financial results as perceived by respondents (Kandir & Haseki, 2023). The research demonstrated that model transparency together with data security and regulatory uncertainties remain common issues which prevent complete AI integration even though its benefits are well-established.

2. Materials and Methods

2.1 Research Design

The research employed quantitative descriptive-correlational methodology to conduct a systematic investigation of Artificial Intelligence integration within financial analytics and its effects on market trend prediction and risk management (Sun et al., 2016). The research methodology was selected to measure AI adoption rates and study the relationships between AI implementation and improved forecasting accuracy and risk management capabilities. A questionnaire consisting of multiple sections was carefully developed to gather extensive data (Rimon, 2024). The questionnaire included demographic questions alongside measurements of AI tool usage frequency and technique specifics and evaluations of financial decision-making benefits and challenges with AI implementation that include model explainability and regulatory compliance and data privacy and ethical matters (Ojeda et al., 2025). The questionnaire underwent a pilot testing phase with financial experts to assess its clarity and relevance and measurement consistency before implementing full-scale deployment. The pilot testing results led to the modification of unclear survey questions while reducing the survey length to enhance participant engagement (Mohamed, 2025).

2.2 Data Collection

The research began with collecting data by randomly selecting 100 financial professionals from commercial banking and investment management and insurance and financial technology sectors (Kulal et al., 2025). The research sample received its participants through random selection and snowball sampling to achieve varied organizational roles and institutional types and experience levels. The survey reached participants through electronic platforms that included Google Forms and LinkedIn professional groups together with direct email invitations (Delen & Ram, 2018). Data collection occurred during July 2025 for two weeks to maximize participant convenience and response rates. The data quality assessment process checked responses for completeness and consistency to remove partial and contradictory answers from the final dataset. The study protected respondent identities which allowed participants to provide authentic responses through confidentiality measures (Charles et al., 2025). The research sample included professionals at various career stages who ranged from junior analysts to senior managers and brought different levels of experience together with educational qualifications to strengthen the analysis of AI adoption in financial analytics.

2.3 Statistical Analysis

Data analysis employed Microsoft Excel together with the SPSS software package for rigorous statistical processing. The research used descriptive statistics to present both respondent demographic information and basic patterns existing in AI adoption and perception (Chabalala et al., 2024). The analysis included frequency

Table 1. Summary of Survey Results in Respondents

Question	Response Options	% of Respondents
Do you use AI-based tools in financial analysis?	Yes / No	68% Yes, 32% No
Trust level in AI for market prediction?	High / Medium / Low	40% High, 47% Medium, 13% Low
Have AI tools improved your forecasting accuracy?	Yes / No / Not Sure	62% Yes, 25% Not Sure, 13% No
Effectiveness of AI in risk management?	Very Effective / Somewhat / Not Effective	35% Very, 50% Somewhat, 15% Not
Main concern in adopting AI	Transparency / Regulation / Accuracy	41% Transparency, 35% Regulation, 24% Accuracy

distributions and percentages alongside means and standard deviations which measured Likert-scale responses. The research applied inferential statistics to investigate connections between essential variables (Etemad, 2025). The research measured association strength together with direction between AI adoption and critical outcomes including forecasting accuracy and risk management effectiveness and financial performance by using Pearson's correlation coefficients (Feng & Qu, 2021). A strong connection ($R = +0.74$, $p = 0.05$) was found between AI implementation levels and financial improvement perceptions which shows organizations using AI tools reported better outcomes. The study conducted further inferential tests which included Analysis of Variance (ANOVA) and independent samples t-tests to check for differences in AI perceptions among different job roles and experience levels and sector affiliations (Milana & Ashta, 2021). Multi-item survey scales achieved high reliability through Cronbach's alpha calculations that exceeded 0.80 which indicates robust measurement instrument consistency.

2.4 Ethical Considerations

The research maintained ethical standards as its fundamental requirement. Before joining the study participants received full information about the research objectives and procedures and their rights. Electronic informed consent procedures highlighted that participation remained entirely voluntary while participants retained the right to exit the study at their discretion without facing any consequences (Murugan et al., 2024). All responses remained confidential because the research team encrypted the data and limited access to authorized personnel. The research eliminated collection of personal identification and financial information to protect participants from potential harm (Nafiu et al., 2025). To protect participant identities researchers presented all data as combined statistics. The research followed international ethical standards for studies together with data protection laws and GDPR requirements when applicable (Feng & Qu, 2021). The institutional ethics review board approved the research protocol before the study began to protect participant welfare and guarantee responsible research practices.

3. Results

A total of 100 financial experts from different industries participated in this research to investigate the utilization of Artificial Intelligence in financial analytics together with their trust levels and specific challenges and benefits and particular AI technologies employed. The results deliver a thorough understanding of the present influence of AI on financial market prediction and risk management strategies.

3.1 AI Adoption and Trust Levels in Respondents

Financial professionals demonstrate 68% active usage of AI tools in their workflows which proves AI has moved beyond its initial niche status to become a standard analytical instrument. Thirty-two percent of professionals show resistance or continue to adopt the technology (Ojeda et al., 2025). Table 1 presents positive market prediction trust in AI as 40% of respondents show high trust and 47% moderate trust while 13% express skepticism because of previous model shortcomings or their preference for conventional techniques. Most users (62%) believe AI has improved forecasting accuracy, while 25% are unsure and 13% see no improvement, suggesting effectiveness depends on implementation quality (Shawaqfeh, 2025). A majority of users (62%) believe AI has enhanced forecasting accuracy but 25% remain uncertain and 13% report no change which indicates implementation effectiveness varies. The effectiveness of risk management models receives mixed ratings with 35% of users considering AI very effective and 50% somewhat effective but 15% deem it completely ineffective which shows opportunities for model performance and interpretability enhancements (Milana & Ashta, 2021). AI implementation faces primary obstacles through lack of transparency (41%) combined with regulatory challenges (35%) and accuracy concerns (24%) which indicate persistent issues regarding explainability and model validation and compliance.

3.2 AI Usage Across Financial Sectors in Respondents

Artificial Intelligence implementation demonstrates considerable variation between different industries because of their varying technological foundation and business priorities. Fintech organizations show an 80% AI adoption percentage because their

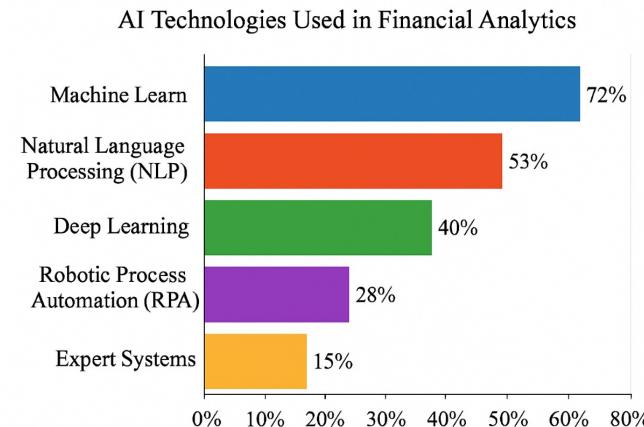
Table 2. AI Tool Usage by Sector (n = 100) Respondents

Sector	Using AI Tools
Investment Firms	75%
Commercial Banks	65%
Fintech Companies	80%
Insurance Companies	60%
Independent Analysts	50%

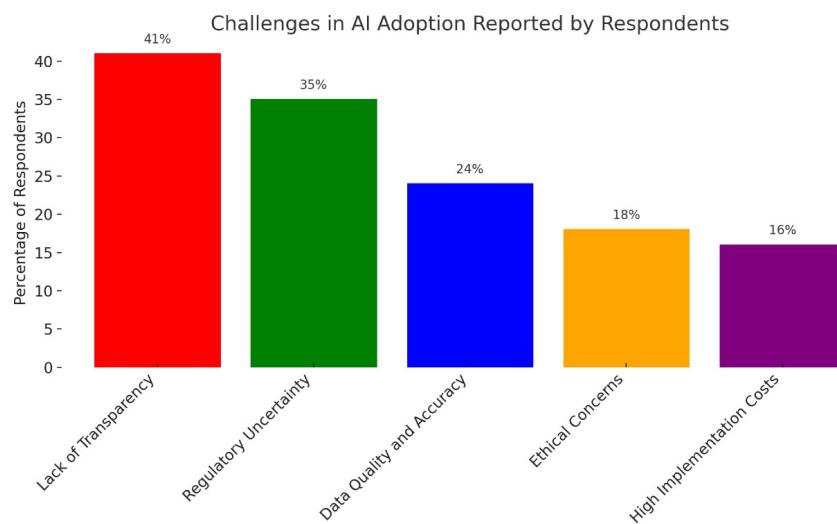
Table 3. Perceived Benefits of AI in Finance (Multiple Selections Allowed)

Benefit	Respondents Selecting This Option
Improved Forecast Accuracy	62%
Faster Decision Making	58%
Better Risk Detection	54%
Operational Efficiency	46%
Regulatory Compliance Support	31%

technology-based business structure and quick innovation approach makes it natural Table 2. These organizations utilize AI to establish market dominance through automated trading systems and customized financial solutions and fraud prevention capabilities. Investment firms maintain a 75% adoption rate because they depend more on AI analytics to improve portfolio management and conduct market timing and risk prediction (Charles et al., 2025). Commercial banks demonstrate a 65% AI adoption rate which matches their digital transformation activities yet indicates that regulatory requirements and outdated systems impede integration. The insurance sector shows a 60% adoption rate for AI which indicates a developing but moderate interest in claims automation along with underwriting and fraud detection applications. The lower adoption rate of these tools could stem from strict regulations and intricate actuarial model processes. The 50% AI tool usage among independent analysts represents the lowest rate because of their smaller resources and limited access to proprietary AI platforms as well as their preference for traditional analysis methods. The financial sector analysis reveals that AI adoption varies significantly because different organizations have distinct objectives and face distinct regulatory requirements and resource constraints.


3.3 Perceived Benefits of AI in Finance

Survey participants recognized various fundamental advantages which financial analytics AI systems deliver beyond basic prediction functions. According to Table 3 62% of respondents identified better forecast accuracy as the primary benefit because financial markets operate in volatile conditions. The second most frequent advantage was expedited decision processes (58%) because AI systems enable companies to make quick decisions from


extensive data analyses which detect opportunities and threats in real-time (Kandir & Haseki, 2023). A majority of respondents (54%) acknowledged AI provided better risk detection capabilities as it helped identify fraud alongside market anomalies and credit risks more effectively than traditional approaches. The capability serves as a crucial tool for avoiding losses while ensuring compliance with regulatory standards. Operational efficiency received 46% of votes because AI systems automate standard labor-intensive operations like data entry and report generation and compliance monitoring resulting in reduced expenses and decreased human mistakes. The analysis shows that regulatory compliance support serves as an emerging field in which AI technology assists with regulatory monitoring and suspicious transaction detection and audit documentation preparation. The research demonstrates that artificial intelligence improves both analytical precision and organizational operational and strategic flexibility across financial institutions.

3.4 Types of AI Tools Used in Respondents

Financial experts indicated various AI technologies being implemented within their operational processes. Machine learning algorithms (72%) lead the market because they demonstrate versatile pattern recognition capabilities and predictive abilities across different financial datasets according to Figure 1. Such models operate through regression analysis together with classification systems and clustering techniques. The importance of Natural Language Processing (NLP) tools (53%) continues to grow because they analyze textual data from news reports and earnings statements and social media to detect market-moving sentiments and important details. Deep learning techniques (40%), specifically neural networks, have gained popularity for their ability to handle

Figure 1. AI Technologies Used in Financial Analytics

Figure 2. Challenges in AI Adoption Respondents

large datasets and model complex nonlinear relationships; however, their “black box” operation leads to transparency problems. Robotic Process Automation (RPA) accounts for 28% and Expert Systems make up 15% of the AI applications in this context because they automate repetitive tasks and capture human expertise in rule-based AI for decision support. The distribution pattern shows how machine learning tools have reached maturity in finance together with increasing usage of advanced AI approaches.

3.5 Challenges in AI Adoption Respondents

The implementation of AI within financial analytics encounters major obstacles during its adoption process. According to 41% of respondents the primary obstacle to AI adoption is the insufficient transparency and explainability of AI models as shown in Figure 2. The “black box” problem creates difficulties for users and regulators to build trust because AI decision processes remain hard to explain. The lack of clear regulatory guidance (35%) stands as a major

obstacle because financial organizations must handle changing compliance standards and unclear legal responsibilities regarding AI functions. The quality and accuracy of data serve as major concerns because AI models require representative high-quality data for training which poor data creates biased and incorrect predictions. The ethical aspects of AI received attention from 18% of respondents who emphasized the importance of responsible AI practices that address biases and fairness issues. AI implementation costs at 16% serve as a major barrier because smaller firms and independent analysts face high expenses when building AI infrastructure and hiring skilled personnel and maintaining systems. AI presents significant potential to organizations yet its successful adoption demands thorough oversight of technological barriers and ethical standards and regulatory requirements.

4. Discussion

This study presents clear evidence that Artificial Intelligence (AI) technology is becoming increasingly integrated into financial analytics operations. The survey results show that 68% of financial professionals currently employ AI tools which proves AI technology has transitioned from experimental stages to become an established analytical resource within finance (Gandhi, 2024). Financial professionals now regard AI as an essential element in financial analysis which enhances both precision and operational efficiency (Chib et al., 2024). The broad implementation of machine learning and natural language processing and deep learning technologies at 72%, 53% and 40% respectively demonstrates strong confidence in AI systems to handle big complex datasets for valuable insights (Abdulla & Al-Alawi, 2024). The usage rates of robotic process automation and expert systems at 28% and 15% respectively show that financial professionals actively adopt multiple AI solutions to automate repetitive tasks and replicate expert human decision-making. The high adoption rates of AI tools among professionals show robust acceptance yet one-third of professionals still avoid using these tools indicating a potential barrier to technology acceptance (Lan, 2024). Several factors might explain this gap in technology adoption such as insufficient resource availability and organizational barriers to change and data security concerns about AI transparency. The reported trust levels about AI market prediction capabilities demonstrate how hesitant people are. The survey results show that 40% of respondents have strong confidence in AI predictions yet 47% maintain moderate confidence in these predictions (Akyüz & Mavnaçioğlu, 2021).

The mixed trust in AI systems stems from increasing user experience yet people remain concerned about model transparency and unaccounted external market elements which AI systems cannot predict. The 13% of participants who exhibited low confidence in AI predictions possibly did so because of previous negative encounters or their dedication to conventional analytical approaches (Che et al., 2024). AI tools delivered better predictive results for 62% of participants during the study which demonstrates their positive effects on forecasting accuracy. AI tools have become essential analytical tools that show promise in environments which need quick and complex data processing. A quarter of professionals remained undecided about AI advantages which possibly includes first-time adopters and users whose tools have not yet reached their peak performance (Chandna et al., 2025). The 13% that showed no improvement reveal that AI success depends entirely on proper deployment methods. The effectiveness of AI in decision-making depends on data quality and model fit and user competence in interpreting AI results. AI demonstrates strong potential for risk management purposes.

The survey results show that 35% of participant's view AI tools as highly effective while 50% see them as moderately effective for

managing financial risks. The current implementation of AI demonstrates its essential function for detecting irregularities while forecasting dangers and generating immediate analyses which streamline decision-making (Ozili, 2025). The 15% of respondents who believe AI fails to manage risks highlight existing system constraints. These may include high false positive rates, over-reliance on historical data that fails to capture new risk patterns, or insufficient model training. The data reveals that continuous assessment together with tool enhancements must take place for the AI tools deployed in this application (Chib et al., 2024). The research data strongly included worries about AI technology adoption. Industry-wide dissatisfaction with AI "black box" models led 41% of respondents to identify transparency issues as the main obstacle for wider AI adoption. Professionals working in finance must explain their decisions to internal stakeholders as well as to their clients and auditors and regulatory bodies (AOAdewusi, 2025). AI systems that fail to provide transparent explanation for their conclusions make it challenging for users to establish trust and maintain accountability. AI adoption faces significant regulatory hurdles because 35% of respondents identified these as major obstacles to implementation since AI systems must comply with current legal standards and regulatory requirements (Paleti, 2025). The accuracy concerns of 24% of respondents demonstrate the importance of running thorough tests alongside ongoing model validation to achieve reliable results.

5. Conclusion

The implementation of Artificial Intelligence (AI) across multiple industries encounters important obstacles according to the survey participants. The main obstacles that organizations face involve insufficient clarity, ambiguous rules and ethical and data quality worries. The existing obstacles reveal that better rules together with superior data management and open AI system design are necessary. Successful AI implementation demands the resolution of these issues to establish both responsible and effective practices. Through collaborative efforts between policy makers and technical experts and stakeholder's organizations can unlock AI's full potential to drive innovative solutions and efficient sustainable development throughout the digital economy.

Author contributions

I.J. conceived and designed the study. M.S.M. and N.C. collected and analyzed the data. M.I.H. contributed to methodology and validation. A.B. supervised the research and provided critical revisions. All authors reviewed and approved the final manuscript.

Acknowledgment

Not declared

Competing financial interests

The authors have no conflict of interest.

References

Abdulla, Y. Y., & Al-Alawi, A. I. (2024). Advances in machine learning for financial risk management: A systematic literature review (pp. 531–535). <https://doi.org/10.1109/icetsis61505.2024.10459536>

Akyüz, A., & Mavnaçioğlu, K. (2021). Marketing and financial services in the age of artificial intelligence. In Contributions to finance and accounting (pp. 327–340). https://doi.org/10.1007/978-3-030-68612-3_23

Alsaadi, M., Almashhadany, M. T., Obaed, A. S., Furajil, H. B., Kamil, S., & Ahmed, S. R. (2024). AI-based predictive analytics for financial risk management. In 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1–7). <https://doi.org/10.1109/ismsit63511.2024.10757214>

Adewusi, V. O. O. T. B. F. A. (2025). Application of artificial intelligence (AI) approach to African real estate market analysis: Opportunities and challenges. *Corrosion-Management.com*. <https://doi.org/10.3390/bcdgj64>

Battula, S. T. (2025). Artificial intelligence-driven risk management for fintech enterprises: Enhancing decision-making through predictive analytics. *International Journal of Science and Technology*, 16(1). <https://doi.org/10.71097/ijst.v16.i1.2804>

Chabalala, K., Boyana, S., Kolisi, L., Thango, B., & Lerato, M. (2024). Digital technologies and channels for competitive advantage in SMEs: A systematic review. <https://doi.org/10.2139/ssrn.4977280>

Chandna, M., Umrao, B. K., Grover, M., J. K. V., Agarwal, T., & J. A. D. S. (2025). Artificial intelligence in banking: Regression analysis for credit risk prediction (pp. 899–904). <https://doi.org/10.1109/autocom64127.2025.10957362>

Charles, V., Emrouznejad, A., & Kunz, W. H. (2025). Advancements in artificial intelligence-based prescriptive and cognitive analytics for business performance: A special issue editorial. *Journal of Business Research*, 200, 115576. <https://doi.org/10.1016/j.jbusres.2025.115576>

Che, C., Huang, Z., Li, C., Zheng, H., & Tian, X. (2024). Integrating generative AI into financial market prediction for improved decision making. *arXiv*. <https://doi.org/10.48550/arxiv.2404.03523>

Chib, S., Tare, D., Samal, A., Mohan, M. L., G. R. V., & N. P. H. (2024). Trend tracking artificial intelligence predictive models for new and highly advanced financial markets (pp. 658–663). <https://doi.org/10.1109/ic3se62002.2024.10593342>

Dahiya, V. K., Dahiya, R., Dev, R., Sharma, A., Sharma, A., Kiran, P. B. N., Yadav, P. S., & Yadav, S. (2024). Exploring the role of artificial intelligence in predictive analytics for financial markets (pp. 1–5). <https://doi.org/10.1109/icccsc62048.2024.10830442>

Delen, D., & Ram, S. (2018). Research challenges and opportunities in business analytics. *Journal of Business Analytics*, 1(1), 2–12. <https://doi.org/10.1080/2573234x.2018.1507324>

Etemad, H. (2025). Challenges of smaller entrepreneurial enterprises aiming to generate higher values by adopting artificial intelligence (AI) and competing in the rapidly evolving AI industry. *Journal of International Entrepreneurship*. <https://doi.org/10.1007/s10843-025-00385-w>

Feng, R., & Qu, X. (2021). Analyzing the internet financial market risk management using data mining and deep learning methods. *Journal of Enterprise Information Management*, 35(4/5), 1129–1147. <https://doi.org/10.1108/jeim-03-2021-0155>

Gandhi, A. K. (2024). AI-powered market risk models: Transforming the future of financial analytics, 5, 57–67. <https://doi.org/10.63282/3050-9262.ijaidsm-v5i1p106>

Kandir, S. Y., & Haseki, M. I. (2023). Predictive analytics for financial risk management in dynamic markets. *American Journal of Business and Operations Research*, 11(1), 54–61. <https://doi.org/10.54216/ajbor.110106>

Kulal, A., Dinesh, S., & N, A. (2025). Organizational impact of AI-driven recruitment practices: A mixed-methods study. *Journal of Computer Information Systems*, 1–16. <https://doi.org/10.1080/08874417.2025.2508860>

Lan, M. (2024). Financial market risk prediction systems based on data analysis (pp. 421–426). <https://doi.org/10.1109/aiars63200.2024.00084>

Milana, C., & Ashta, A. (2021). Artificial intelligence techniques in finance and financial markets: A survey of the literature. *Strategic Change*, 30(3), 189–209. <https://doi.org/10.1002/jsc.2403>

Mohamed, G. (2025). Comparative analysis of AI-driven decision support systems and traditional spreadsheets: Evaluating accuracy and consistency in business intelligence. <https://doi.org/10.2139/ssrn.5187060>

Murugan, V. G., Kaur, K., Pundir, S., Singh, R., Patjoshi, P. K., & Jayanthi, L. N. (2024). Predictive model for risk assessment in share market using AI in finance (pp. 1–5). <https://doi.org/10.1109/icdcot61034.2024.10515683>

Ojeda, A. M., Valera, J. B., & Diaz, O. (2025). Artificial intelligence of big data for analysis in organizational decision-making. *Global Journal of Flexible Systems Management*. <https://doi.org/10.1007/s40171-025-00450-2>

Ozili, P. K. (2025). Artificial intelligence and digital financial inclusion. In *Studies in computational intelligence* (pp. 261–274). https://doi.org/10.1007/978-3-031-77925-1_23

Paleti, S. (2025). The role of artificial intelligence in strengthening risk compliance and driving financial innovation in banking. *SSRN Electronic Journal*. <https://doi.org/10.2139/ssrn.5250770>

Pillai, V. (2023). Integrating AI-driven techniques in big data analytics: Enhancing decision-making in financial markets. *International Journal of Engineering and Computer Science*, 12(07), 25774–25788. <https://doi.org/10.18535/ijecs/v12i07.4745>

Rane, N., Choudhary, S., & Rane, J. (2024). Artificial intelligence and machine learning in business intelligence, finance, and e-commerce: A review. *SSRN Electronic Journal*. <https://doi.org/10.2139/ssrn.4843988>

Rimon, S. T. H. (2024). Leveraging artificial intelligence in business analytics for informed strategic decision-making: Enhancing operational efficiency, market insights, and competitive advantage. *Deleted Journal*, 6(1), 600–624. <https://doi.org/10.60087/jaigs.v6i1.278>

Shawaqfeh, G. N. (2025). The impact of AI on enhancing financial predicting accuracy and improving risk management in financial market. *Digital Economy*. <https://doi.org/10.2139/ssrn.5097473>

Sun, Z., Sun, L., & Strang, K. (2016). Big data analytics services for enhancing business intelligence. *Journal of Computer Information Systems*, 58(2), 162–169. <https://doi.org/10.1080/08874417.2016.1220239>

Vyas, A. (2025). Revolutionizing risk: The role of artificial intelligence in financial risk management, forecasting, and global implementation.
<https://doi.org/10.2139/ssrn.5224657>