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Abstract 
AI stands for artificial intelligence, the computer systems 

emulating human intelligence to complete difficult tasks 

like interpreting data. The recent advancements in the 

field of AI in general, particularly the development of deep 

learning algorithms and hardware development in the 

form of GPU, have now made it possible to apply it in 

medical diagnostics. Artificial Intelligence frameworks are 

adept in treatment of vast, complex data and thus are an 
efficient tool for clinical assessments. AI is already 

transforming image-based diagnostics, electronic health 

records (EHRs) and clinical genomics, as we review here. 

We summarize AI’s ability to work with problem classes 

like computer vision, time series analysis, and natural 

language processing, each of which corresponds to 

specific diagnostic tasks. Some novel approaches are 

presented in clinical genomics such as in the areas of 

variant calling, genome annotation and phenotype to 

genotype mapping. Deep learning’s capacity to extract 

useful signals from genomic and phenotypic data  

with minimal human guidance is accelerating precision 

medicine. Convolutional and recurrent neural networks 

have been shown to outperform all other methods for 

genomic data interpretation. These tools do have  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

limitations, including dependence on large, high quality 

training datasets as well as robust phenotype data. Here 

we discuss how advanced biobank projects are a path 

towards that future even if AI has not yet fully delivered on 

its promise to enable complex human phenotype 

prediction. Interpretability, bias mitigation and solving 
barriers to data collection are crucial elements for AI to 

thrive within the context of personalized medicine. The 

constant growth of AI has the potential to completely 

change genetic studies as well as clinical diagnostics. 
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Clinical Applications, Data Interpretation, Deep Learning. 

 

 

Introduction 

Artificial intelligence (AI) is where a human's real intelligence is 
simulated on a non-living thing. We define AI in the field of 
clinical diagnostics as any computer system that can properly and 
accurately interpret health data, especially in its native form as seen 
by humans. These clinical applications often leverage AI 
frameworks to facilitate timely interpretation of large 
heterogeneous data sets. These AI systems are trained on external 
health data that have generally also been interpreted by humans 
and that have undergone relatively little processing before they are 
presented to the AI system, such as clinical images that have been 
annotated and interpreted by a human expert. Then the AI system 
learns how to perform that interpretation task on new health- 
associated data of the same type, which in clinical diagnostics is 
often  a  question  of  identifying  or  predicting  status  with  a  given  
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disease. AI interpretation tasks may be clustered together in 
problem classes e.g. computer vision, time series analysis speech 
recognition, and natural language processing. Each of these 
problems is well suited to address specific types of clinical 
diagnostic tasks (Torkamani et al., 2017). For example, computer 
vision is useful for the interpretation of radiological images, time 
series analysis is useful for the analysis of continuously streaming 
health data such as those provided by an electrocardiogram (Esteva 
et al., 2018), speech recognition techniques can be used for 
detection of neurological disorders (Fraser et al., 2015), and AI-
based natural language processing can be helpful in the extraction 
of meaningful information from electronic health record (EHR) 
data (Rajkomar et al., 2018). In some areas, the association between 
problem classes and diagnostic tasks may not be as obvious; for 
example, techniques from computer vision are also useful for the 
identification of functional regulatory elements in the human 
genome, where they can be used to identify recurrent motifs in 
DNA sequences in a manner analogous to that in which pixel 
patterns are detected in images by convolutional neural networks 
(CNNs; described in the next section) (Zou et al., 2018). Many of 
these problems have been addressed by a specific group of AI 
algorithms known as deep learning, which can learn interpretable 
features from large and complex datasets by using deep neural 
network architectures. Neural networks are computational systems 
of artificial neurons (also called ‘nodes’) that transmit signals to one 
another, often in interconnected layers. 
The layers that are not the input or output layer are termed the 
‘hidden’ layers. A deep neural network consists of many hidden 
layers of artificial neurons. Neural networks often take as input the 
fundamental unit of data that it is trained to interpret: for example, 
pixel intensity in images; diagnostic, prescription, and procedure 
codes in EHR data; or nucleotide sequence data in genomic 
applications (Eraslan et al., 2019). In other words, unlike most 
machine-learning approaches, minimal or no human extraction 
and definition of predictive features are required. A multitude of 
these simple features are combined in successive layers of the neural 
network in a variety of ways, as designed by the human neural 
network architect, in order to represent more sophisticated 
concepts or features of the input health data. Ultimately, the output 
of the neural network is the interpretation task that the network has 
been trained to execute. For example, successive layers of a 
computer vision algorithm might learn to detect edges in an image, 
then patterns of edges that represent shapes, then collections of 
shapes that represent certain objects, and so on. Thus, AI systems 
synthesize simple features into more complex concepts to derive 
conclusions about health data in a manner that is analogous to 
human interpretation, although the complex concepts used by the 
AI systems are not necessarily recognizable or obvious concepts to 
humans.  

In this review, we describe the recent successes and potential future 
applications of AI, especially deep learning, in clinical diagnostics, 
with a focus on clinical genomics. We provide a brief overview of 
AI algorithms and the classes of problems that they are well suited 
to address. Next, we provide a more detailed review of how AI has 
been used to accomplish a variety of clinical genomics tasks, 
including variant calling and annotation, variant impact prediction, 
and phenotype-to-genotype mapping. Finally, we end by discussing 
the potential future applications and challenges of AI in genotype 
to phenotype prediction, especially as it relates to common complex 
diseases and individualized medicine.  
 
Artificial intelligence and its applications  
The present-day clinical diagnostic AI algorithms are referred to be 
"weak" or "narrow" AI. These artificial intelligence algorithms are 
trained to do a specific task, such as classifying skin lesion photos 
into diagnostic categories or generating a molecular diagnosis using 
phenotypic and genomic information. These algorithms do not 
display general intelligence and are not flexible enough to address 
other clinical diagnostic tasks. However, transfer learning 
approaches can be used to adapt a fully trained AI algorithm to 
accomplish closely related tasks. This is best exemplified by image-
based diagnostic AI algorithms that benefit from advances in 
computer vision and neural networks trained for general image 
recognition tasks. Thus, the first step in the design of clinical 
diagnostic AI algorithms usually involves mapping the specific 
diagnostic task to a more general problem class. Here, we review 
these problem classes and briefly highlight the intersection of these 
techniques with genomics.  
Computer vision  
The multidisciplinary field of computer vision is concerned with 
the collection, processing, and analysis of pictures and/or videos. In 
order to generate numerical or symbolic representations of 
concepts encoded in the picture, computer vision algorithms 
synthesize (or "convolute") high dimensional image data. This 
process is thought to mimic the way humans identify patterns and 
extract meaningful features from images. The main steps in 
computer vision consist of image acquisition, pre-processing, 
feature extraction, image pattern detection or segmentation, and 
classification. Deep-learning algorithms such as CNNs have been 
designed to perform computer vision tasks. In simplified terms, a 
typical CNN tiles an input image with small matrices known as 
kernel nodes or filters. Each filter encodes a pixel intensity pattern 
that it ‘detects’ as it convolves across the input image. A multitude 
of filters encoding different pixel intensity patterns convolve across 
the image to produce two-dimensional activation maps of each 
filter. The pattern of features detected across the image by these 
filters may then be used to successively detect the presence of more 
complex features (Figure 1).  
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Surveillance, image recognition, and autonomous vehicles are some 
of the major applications of computer vision. In clinical diagnostics, 
the first applications of AI in healthcare to be cleared by the US 
Food and Drug Administration (FDA) have been dominated by 
applications of computer vision to medical scans (for example, 
magnetic resonance imaging (MRI) or positron emission 
tomography images), and pathology images (for example, 
histopathological slides). The first medical imaging applications 
include the automated quantification of blood flow through the 
heart via cardiac MRI (Retson et al., 2019), the determination of 
ejection fraction from echocardiograms (Asch et al., 2019), the 
detection and volumetric quantification of lung nodules from 
radiographs (Retson et al., 2019), the detection and quantification 
of breast densities via mammography (Le et al., 2019), the detection 
of stroke, brain bleeds, and other conditions from computerized 
axial tomography (Detecting Intracranial Hemorrhage With Deep 
Learning, 2018; FDA Approves Stroke-detecting AI Software, 
2018), and automated screening for diabetic retinopathy from 
comprehensive dilated eye examination (Gulshan et al., 2016; Van 
Der Heijden et al., 2017). Imaging applications in pathology include 
an FDA-cleared system for whole-slide imaging (Evans et.al.,2018) 
and promising approaches to the automated classification of 
dermatological conditions (Esteva et al.,2017) as well as numerous 
other whole-slide imaging and AI systems in development that are 
expected to dramatically enhance the efficiency of pathologists 
(Niazi et al.,2019). 
Computer vision can also inform clinical genomic testing. For 
example, deep learning of lung cancer histopathological images is 
able to identify cancer cells, determine their type, and predict what 
somatic mutations are present in the tumor (Velazquez et al., 2017; 
Coudray et al., 2018). Similarly, facial image recognition can be used 
to identify rare genetic disorders and to guide molecular diagnoses 
(Gurovich et al., 2018; Dolgin, 2019). Thus, computer vision can 
extract phenotypic features from medical images in order to 
provide recommendations for molecular testing in a manner 
similar to that performed by a skilled pathologist or 
dysmorphologist. In some cases, AI-based systems have exceeded 
the capabilities of human experts, for example, by accurately 
predicting gender from retinal fundus images, a task that human 
experts would perform no better than random guessing (Poplin et 
al., 2018).  
Time series analysis  
The investigation of temporal data to predict future observations, 
to predict the discrete state generating a sequence of observations 
(e.g., normal heart rhythm versus arrhythmia), or to identify 
anomalies within a sequence of observations is known as time series 
analysis. In a broader sense, time series analysis can be applied to 
any ordered data, such as ordered but temporally disconnected 
DNA sequences. Time series analysis algorithms ingest data 

sequences and are generally tasked to learn sequential 
dependencies. The primary advantage of AI algorithms in time 
series analysis is an improved ability to detect non-linear and/or 
multi-step relationships that are not efficiently interrogated by 
traditional approaches such as hidden Markov models. Deep-
learning algorithms, especially recurrent neural networks (RNNs), 
have been designed for sequence analysis tasks. A typical RNN 
includes some form of ‘memory’, in which prior inputs in a 
sequence influence future output. This is achieved by linking the 
hidden state of an input to the hidden state of the next input (Fig. 
1). Extensions of this concept, which are implemented in 
specialized networks such as long short-term memory networks 
(LSTMs), add network elements that enhance the ability of the 
network to ‘remember’ long-term dependencies in the input data. 
CNNs are often applied to time series data when the task is to define 
the discrete state, or context, that produces the sequential data 
pattern. Time series analysis has major applications in the 
forecasting of equity prices, weather conditions, geological events, 
and essentially any future event of interest. In clinical diagnostics, 
time series AI algorithms can be applied to medical devices 
producing continuous output signals, with the application of 
electrocardiograms being an especially active area of interest. AI 
applied to electrocardiograms can detect and classify arrythmias 
(Hannun et al., 2018), especially atrial fibrillation (Tison et al., 
2018), as well as cardiac contractile dysfunction (Attia et al., 2018), 
and blood chemistries linked to cardiac rhythm abnormalities 
(Galloway et al., 2019). When applied to genomic sequence data, AI 
time series algorithms appear to be especially effective at detecting 
functional DNA sequence elements that are indicative of gene 
splicing (Leung et al., 2014; Jaganathan et al., 2019), large-scale 
regulatory elements (Quang & Xie, 2016), and gene function (Wang 
et al., 2018).  
Automatic speech recognition  
Automatic speech recognition includes a group of methodologies 
that enable the interpretation of spoken language. Speech-
recognition algorithms ingest raw sound waves from human speech 
and process them to allow the recognition of basic elements of 
speech including tempo, pitch, timbre, and volume, as well as more 
complex features of speech including the spoken language, words, 
and sentences (Li et al.,2015). More advanced speech recognition 
algorithms can identify sophisticated features from audiological 
data, such as mood changes or emotional states (Parthasarathy et 
al.,2019; Trigeorgis et al., 2016). Because of the temporal complexity 
of speech, traditional speech-recognition algorithms have typically 
relied on separate models to reassemble meaning from spoken 
language. These steps include segmenting audio into distinct units 
of sound (for example, phonemes), connecting those sound units 
into language units (for example, words), and assembling those 
language units into more complex language elements (for example, 
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phrases) to extract meaning. Recent advances in AI algorithms that 
address temporal sequences through sequence-to-sequence 
attention-based and recurrent neural network transducer-based 
approaches now allow for these tasks to be executed in a single 
model with streaming output (Hinton et al.,2012; Prabhavalkar et 
al.,2017) In sequence-to-sequence models, for example, a neural 
network can map the sequences of phonemes produced by an 
acoustic model into sequences of words, or a sequence of words can 
be translated into another language. Thus, sequence-to-sequence 
and other speech recognition models can also act as powerful tools 
for the communication of medical and health information across 
language barriers.  
Voice command and virtual assistant systems are the major 
applications of speech recognition. Speech recognition algorithms 
have not yet found widespread use in clinical diagnostics but they 
have shown great promise in the detection of neurological 
conditions that are often challenging to diagnose with traditional 
clinical tools. In these clinical applications, the same genera speech-
recognition strategies are used, but the outcome targeted by the 
final classification step is a disease phenotype that is typically 
associated with characteristics of speech (tone, tempo, pitch, and so 
on) and not necessarily the content of the language. Speech 
recognition has been successfully applied to the detection of 
diseases with an obvious influence on speech, notably chronic 
pharyngitis (Li et al., 2019), and of diseases with a less obvious 
influence on speech, including Alzheimer’s disease (Fraser et al., 
2015), Parkinson’s disease (Torkamani et al., 2017), major 
depressive disorder (Ringeval et al.,2019) posttraumatic stress 
disorder (Marmar et al., 2019), and even coronary artery disease 
(Maor et al., 2018). Like imaging, speech recognition can detect 
potential genetic disorders and inform downstream clinical testing. 
In addition, speech recognition can be used as a tool to streamline 
the use of EHRs through automatic transcription, benefitting 
clinicians and patients and enabling natural language processing 
(NLP) analysis (Mohr et al., 2003; Edwards et al., 2017), as described 
in the next section.  
Natural language processing NLP is the computational extraction 
of meaning from natural human language. These algorithms take as 
input a document, or potentially the output from automatic speech 
recognition, and output a useful transformation of the document. 
This transformation could be language translation, document 
classification, summarization, or extraction of higher-level 
concepts described by the text. Typical NLP algorithms involve 
syntactic analysis, which involves parsing the written text in a 
variety of ways to extract useful computational representations of 
language (by sentence breaking, tagging parts of speech, and 
standardizing inflected word forms, for example), followed by 
semantic analysis to extract meaning and/or the identification of 
named entities from the text. A wide variety of neural network 

architectures have been developed for NLP depending upon the 
target outcome, from sequence-to-sequence networks and other 
RNN variants for language translation (Wu, 2016), to CNNs to 
extract higher-level interpretations of the text (Collobert et 
al.,2008).  
A major challenge that is addressed by NLP is the variety of 
synonyms, phrases, and interrelated concepts that can be used to 
express a singular meaning. This problem is especially pronounced 
in clinical applications where controlled vocabularies are numerous 
and in constant flux. Thus, NLP has been effectively used to 
automatically standardize and synthesize these terms to produce 
predictions of current and future diagnoses and medical events, 
(Rajkomar et al., 2018; Miotto et al.,2016) Similarly, NLP can be 
used to make health information more accessible by translating 
educational materials into other languages or by converting medical 
terms to their lay definitions (Chen et al., 2018). AI-based chatbots 
have already been deployed to augment the capabilities of genetic 
counselors to meet rising demands on their time generated by the 
rapidly expanding volume of clinical and direct-to-consumer 
genetic testing (Kohut et al., 2019). In addition, NLP approaches to 
EHR analysis can overcome the high dimensionality, sparseness, 
incompleteness, biases, and other confounding factors present in 
EHR data. For example, NLP has been applied to EHRs to predict 
patient mortality after hospitalization. In this application, EHR data 
are converted to a series of patient events streamed into an RNN, 
which was trained to identify patterns of patient characteristics, 
diagnoses, demography, medications, and other events that are 
predictive of near-term patient mortality or hospital readmission 
(Rajkomar et al., 2018). Similarly, when combined with other 
medical data, predictions of disease severity and therapy efficacy 
can be made (Diller et al., 2018). When combined with genomic 
data, NLP-based methods have been used to predict rare disease 
diagnoses and to drive phenotype informed genetic analysis, 
resulting in automated genetic diagnoses with accuracy similar to 
that of human experts (Liang et al., 2019; Clark et al., 2019).  
Artificial intelligence in clinical genomics Mimicking human 
intelligence is the inspiration for AI algorithms, but AI applications 
in clinical genomics tend to target tasks that are impractical to 
perform using human intelligence and error prone when addressed 
with standard statistical approaches. Many of the techniques 
described above have been adapted to address the various steps 
involved in clinical genomic analysis including variant calling, 
genome annotation, variant classification, and phenotype-to-
genotype correspondence and perhaps eventually they can also be 
applied for genotype-to-phenotype predictions. Here, we describe 
the major classes of problems that have been addressed by AI in 
clinical genomics.  
Variant calling the clinical interpretation of genomes is sensitive to 
the identification of individual genetic variants among the millions 
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populating each genome, necessitating extreme accuracy. Standard 
variant-calling tools are prone to systematic errors that are 
associated with the subtleties of sample preparation, sequencing 
technology, sequence context, and the sometimes-unpredictable 
influence of biology such as somatic mosaicism (Kohut et al., 2019). 
A mixture of statistical techniques including hand-crafted features 
such as strand-bias (DePristo et al., 2011) or population-level 
dependencies (Garrison & Marth, 2012) are used to address these 
issues, resulting in high accuracy but biased errors (Hwang et al., 
2015). AI algorithms can learn these biases from a single genome 
with a known gold standard of reference variant calls and produce 
superior variant calls. Deep Variant, a CNN-based variant caller 
trained directly on read alignments without any specialized 
knowledge about genomics or sequencing platforms, was recently 
shown to outperform standard tools on some variant-calling tasks 
(Popli et al., 2018). The improved accuracy is thought to be due to 
the ability of CNNs to identify complex dependencies in sequencing 
data. In addition, recent results suggest that deep learning is poised 
to revolutionize base calling (and as a result, variant identification) 
for nanopore-based sequencing technologies, which have 
historically struggled to compete with established sequencing 
technology because of the error-prone nature of prior base-calling 
algorithms (Wick et al., 2019).  
Genome annotation and variant classification After variant calling, 
the interpretation of human genome data relies on the 
identification of relevant genetic variants through prior knowledge 
and inference of the impact of genetic variants on functional 
genomic elements. AI algorithms can improve the use of prior 
knowledge by informing phenotype-to-genotype mapping 
(described in the next section). Here, we describe both genome 
annotation and variant classification because many of the AI 
algorithms that are used to predict the presence of a functional 
element from primary DNA sequence data are also used to predict 
the impact of a genetic variation on those functional elements.  
Classification of coding variants 
Many methods have been developed for the classification of 
nonsynonymous variants (Tang & Thomas, 2016). Some of these 
methods have been integrated into deep-learning-based meta 
predictors (models that process and merge the predictions 
produced by several other predictors) that outperform both their 
individual predictive components and the combination of those 
predictive components when integrated using regression or other 
machine-learning approaches (Quang et al., 2014). For example, the 
combined annotation dependent depletion approach (CADD) 
(Kircher et al., 2014) combines a variety of predictive features in a 
machine-learning algorithm to predict the deleteriousness of 
genetic variants. A deep-learning-based extension of CADD, 
named DANN, demonstrated improved performance using the 
same set of input features as CADD but combined in a deep neural 

network (Quang et al., 2014). This technical extension of CADD 
suggests that deep learning may be a superior approach for 
integrating known features that are predictive of deleteriousness. 
However, the classification accuracies of these tools are not 
sufficient to drive clinical reporting, although they can be useful for 
guiding the interpretation of clinical genomic data by prioritizing 
potential candidate variants for further consideration. More 
interesting are AI-based methods that make predictions directly 
from DNA or protein sequence data with minimal hand-crafting of 
features. One approach, Primate AI, which used CNNs trained on 
variants of known pathogenicity with data augmentation using 
cross-species information, was shown to outperform prior methods 
when trained directly upon sequence alignments (Sundaram et al., 
2018). The network was able to learn important protein domains, 
conserved amino acid positions, and sequence dependencies 
directly from the training data consisting of about 120,000 human 
samples. Primate AI substantially exceeded the performance of 
other variant pathogenicity prediction tools in differentiating 
benign and pathogenic de-novo mutations in candidate 
developmental disorder genes, and in reproducing prior knowledge 
in Clinvar (Landrum et al., 2017). These results suggest that Primate 
AI is an important step forward for variant classification tools that 
may lessen the reliance of clinical reporting on prior knowledge. In 
addition, deep generative models have shown promise for 
predicting the effects of genetic variants (Riesselman et al., 2018), 
and are especially intriguing given their ability to evaluate the joint 
influence of multiple genetic variants and/or complex indels on 
protein function, a capability that is largely absent from most 
pathogenicity prediction tools. Deep generative models are a type 
of deep neural network that can learn to replicate data distributions 
and produce examples not previously observed by the model. For 
example, a deep generative model trained on images of birds could 
learn to generate novel bird images.  
Classification of non-coding variants  
The computational identification and prediction of noncoding 
pathogenic variation is an open challenge in human genomics 
(Chatterjee & Ahituv, 2017). Recent findings suggest that AI 
algorithms will substantially improve our ability to understand 
non-coding genetic variation. Splicing defects in genes are 
responsible for at least 10% of rare pathogenic genetic variation 
(Soemedi et al., 2017), but they can be difficult to identify because 
of the complexity of intronic and exonic splicing enhancers, 
silencers, insulators, and other long range and combinatorial DNA 
interactions that influence gene splicing (Baeza-Centurion et 
al.,2019). Splice AI, a 32-layer deep neural network, is able to 
predict both canonical and non-canonical splicing directly from 
exon–intron junction sequence data (Jaganathan et al., 2019). 
Remarkably, Splice AI was able to use long-range sequence 
information to boost prediction accuracy from 57%, using a short 
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window size (80 nucleotides) typical for many prior splicing 
prediction tools, to 95% when a 10 kb window size was ingested by 
the AI algorithm, and was able to identify candidate cryptic splicing 
variants underlying neurodevelopmental disorders.  
Deep-learning-based approaches have also substantially improved 
our ability to detect regulatory elements (Kelley et al., 2018; 
Alipanahi et al.,2015) and to predict the influence of genetic 
variation on those elements. DeepSEA, a multitask hierarchically 
structured CNN trained on large-scale functional genomics data 
(Bernstein et al., 2010), was able to learn sequence dependencies at 
multiple scales and simultaneously produce predictions of DNase 
hypersensitive sites, transcription factor binding sites, histone 
marks, and the influence of genetic variation on those regulatory 
elements, with a level of accuracy superior to those of other tools for 
prioritizing non-coding functional variants (Zhou & Troyanskaya, 
2015). As seen for SpliceAI, the ability of DeepSEA to ingest DNA 
sequences of 1 kb, which is substantially larger than the input to 
typical motif-based search tools, was critical to this improved 
performance. Extensions of DeepSEA have been applied to whole-
genome sequencing data from families with autism spectrum 
disorder to reveal several candidate non-coding mutations (Zhou et 
al., 2019). Further extension to the ExPecto algorithm has 
demonstrated its ability to predict gene expression levels directly 
from DNA sequence information (Zhou et al., 2018). Further 
investigation of these new deep-learning based frameworks for the 
analysis of non-coding sequence data is likely to provide new 
insights into the regulatory code of the human genome.  
Phenotype-to-genotype mapping  
Numerous genetic variations found in human genomes have either 
been previously identified as harmful or are anticipated to be 
harmful (Telenti et al., 2016), regardless of the individual health 
status (Erikson et al.,2016). Therefore, the molecular diagnosis of 
disease often requires both the identification of candidate 
pathogenic variants and a determination of the correspondence 
between the diseased individual’s phenotype and those expected to 
result from each candidate pathogenic variant. AI algorithms can 
significantly enhance the mapping of phenotype to genotype, 
especially through the extraction of higher-level diagnostic 
concepts that are embedded in medical images and EHRs.  
Image to genetic diagnosis  
The human phenotype ontology lists 1007 distinct terms defining 
different abnormalities of the face (Köhler et al., 2018). These 
abnormalities are associated with 4526 diseases and 2142 genes. A 
dysmorphologist will often identify these abnormalities 
individually and synthesize them into a clinical diagnosis. The 
clinical diagnosis may then inform targeted gene sequencing or 
phenotype-informed analysis of more comprehensive genetic data. 
Often the human-provided clinical diagnosis and molecular 
diagnoses overlap but do not match precisely because of the 

phenotypic similarity of genetically distinct syndromes. 
DeepGestalt, a CNN-based facial image analysis algorithm, 
dramatically outperforms human dysmorphologists in this task and 
is precise enough to distinguish between molecular diagnoses that 
are mapped to the same clinical diagnosis (that is, distinct 
molecular forms of Noonan syndrome) (Gurovich et al., 2018). 
When combined with genomic data, PEDIA, a genome 
interpretation system incorporating DeepGestalt, was able to use 
phenotypic features extracted from facial photographs to accurately 
prioritize candidate pathogenic variants for 105 different 
monogenic disorders across 679 individuals (Hsieh et al., 2019). 
Deployment of DeepGestalt as a face-scanning app has the potential 
to both democratize and revolutionize the identification of genetic 
syndromes (Dolgin, 2019).  
Genetic syndromes that are identified through facial analysis can be 
readily confirmed with DNA testing, but adequate material for 
somatic mutation testing is not always available in some instances 
of cancer. Nevertheless, knowledge of the genomic underpinnings 
of a tumor are critical to treatment planning. Here again, AI can 
bridge the gap between image-derived phenotypes and their 
probable genetic source. A ‘survival CNN’, which is a combination 
of a CNN with Cox proportional hazards-based outcomes (a type of 
statistical survival analysis), was able to learn the histological 
features of brain tumors that are associated with survival and 
correlated with somatic mutation status (Mobadersany et al., 2018). 
Importantly, this algorithm was not trained to predict genomic 
aberrations directly. Inspection of the CNN concepts used to make 
the survival predictions identified novel histological features that 
are important for prognosis determination. Like the faces of 
individuals with phenotypically overlapping genetic syndromes, 
these results suggest that the genomic aberrations underpinning an 
individual’s tumor could potentially be predicted directly from 
tumor histology images. More generally, AI-based computer vision 
systems appear to be capable of predicting the genomic aberrations 
that are likely to be present in an individual’s genome on the basis 
of the complex phenotypes embedded in relevant clinical images 
(Dolgin, 2019; Mobadersany et al., 2018).  
EHR to genetic diagnosis Disease phenotypes can be complex and 
multimodal; captured not only by medical imaging, but also by 
biochemical and other tests that may be ordered at different times 
and perhaps by different physicians during the course of a 
differential diagnosis. These results are documented in an EHR 
where physicians synthesize these findings to provide diagnoses 
and inform clinical decision-making. Although human specialists 
can accomplish this task accurately within their area of expertise, 
AI-based algorithms can be general EHR pattern recognition 
experts. In a recent study involving more than 500,000 patients, an 
AI-based NLP approach was used to extract clinically relevant 
features from EHR data. A hierarchical statistical model, tiered on  
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Figure 1: Examples of Different Neural Network Architectures and Their Applications in Genomics 
a) Convolutional networks process input data by dividing it into smaller segments, applying specific filters to each segment, and 
multiplying feature values by weights. The result reveals patterns (such as conserved motifs) that are then mapped back to the original 
data. These patterns can be used to train models (like feedforward networks or logistic regression) to classify the data, such as 
determining whether a particular motif is a binding target. By selectively masking or filtering out certain base pairs, these models 
highlight the most important features for accurate classification. 
b) Recurrent networks in natural language processing take segmented input (such as text or DNA sequences) and identify connections 
between elements through a network of hidden states. Typically, the hidden states are represented by unidirectional nodes that process 
the input in one direction. This figure shows a bidirectional recurrent network that processes input in both directions, using hidden 
states from neighboring elements to predict context (e.g., identifying whether a sequence is part of an intron or exon). 
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the basis of anatomic divisions in a manner meant to mimic the 
clinical reasoning of a composite of experienced physicians, was 
trained on the NLP output to generate a diagnostic system (Liang et 
al., 2019). Overall, this system was able to differentiate between 55 
common pediatric diagnoses with 92% accuracy.  
When linked with genomic data, an AI-based diagnostic agent 
coupled with a genome interpretation system can rapidly produce 
genetic diagnoses. For example, an NLP system was designed to 
extract phenotypic descriptions automatically from EHR data of 
pediatric patients with rare diseases, and to rank matches to the 
expected phenotypic features of candidate pathogenic variants in 
the patients’ genomes (Clark et al., 2019). In 101 children with 105 
genetic diseases, automated retrospective genomic diagnoses 
agreed with expert human interpretation at 97% recall and 99% 
precision. The system was also able to provide automated genomic 
diagnoses prospectively for three of seven seriously ill ICU infants. 
Intriguingly, a simpler phenotypic risk score approach, applied to 
an adult population with EHR and genomic data, was able to 
identify previously unrecognized monogenic conditions in 18 
individuals from a population of 21,701 (Bastarache et al., 2018). 
These results suggest that AI-based phenotype to genotype 
mapping approaches could significantly improve the diagnostic 
yield of genetic testing and the identification of individuals with 
unrecognized genetic disorders.  
Genotype-to-phenotype prediction  
The ultimate clinical goal of genetics is to detect and predict future 
illness risk. For several frequent complicated disorders, risk 
stratification is both personally and therapeutically valuable thanks 
to relatively straightforward statistical methods for polygenic risk 
prediction. (Torkamani et al., 2018). A few studies have attempted 
genomic prediction of complex human traits using AI algorithms, 
but most of those reported in the literature to date are probably 
overfit as they purportedly explain substantially more trait variance 
than should be possible on the basis of heritability estimates. One 
application of machine learning to genomic prediction of height 
was able to provide relatively accurate predictions within expected 
bounds (Lello et al., 2018), suggesting that AI-based methods can 
be used to improve upon statistical techniques. However, the true 
utility of AI-based approaches in genotype-to-phenotype 
prediction will probably come from the integration of a variety of 
health data types and risk factors into comprehensive predictors of 
disease risk.  
Common diseases are a result of a complex interplay between 
inherited genetic risk factors, environmental exposures, and 
behaviors. Genetic risk alone provides a baseline estimate of lifetime 
risk for disease, but genetic risk combined with other risk factors 
allows for a narrowing of that probability space into a short-term 
projection of disease risk. For example, several non-genetic risk 
factors are associated with breast cancer risk, including 

mammographic density, age at first birth, age at menarche, and age 
at menopause. Combining these nongenetic risk factors with 
genetic data significantly improves the accuracy of breast cancer 
risk models and can inform risk-based mammographic screening 
strategies (Lee et al., 2019). Similarly, significant improvement in 
risk stratification can be achieved by integrating conventional and 
genetic risk factors for coronary artery disease (Inouye et al., 2018). 
Genetic risk score models are more useful than simple 
pathogenicity assertions in cases where a common disease is the 
result of a combination of weak effects from multiple loci. However, 
current models integrate genetic and non-genetic risk factors in 
simple additive models that probably do not capture the complex 
causal relationships between these heterogenous risk factors. AI 
algorithms, given an appropriate volume of data, excel at dissecting 
this complexity. Unraveling the complex interplay between genetic 
data, EHR data, digital health monitoring devices, and other sources 
of health information with AI-based algorithms is a compelling 
prospect for the future.  
Challenges and limitations  
The capacity of AI-based systems to comprehend complicated data 
can be superhuman. However, when used to data on human health, 
their strength and complexity can also lead to erroneous, immoral, 
and prejudiced findings. Without careful consideration of the 
methods and biases embedded in a trained AI system, the practical 
utility of these systems in clinical diagnostics is limited. Thus, we 
end with a discussion on the challenges and limitations of AI in 
clinical diagnostics.  
Regulatory issues  
The FDA has authorized an increasing number of AI algorithms 
(Topol., 2018). These algorithms raise a number of regulatory and 
ethical challenges around the sourcing and privacy of the data used 
to train the algorithms (Dias & Torkamani, 2019), the transparency 
and generalizability of the underlying algorithms themselves, the 
regulatory process for refreshing these algorithms as further data 
become available, and the liability associated with prediction errors 
(Vayena et al., 2018). Some of these issues can and should be 
addressed by open sharing of AI models in detail (including source 
codes, model weights, meta graphs, and so on) with the scientific 
and medical community to improve transparency. Other issues will 
need to be addressed by the development of: (i) best practices for 
the interpretability of predictions to protect patient autonomy and 
shared decision-making; (ii) fairness standards to minimize 
disparities induced by machine bias; and (iii) ad hoc guidance to 
allow for continuous improvement of the algorithms (Vayena et al., 
2018). As with most biomedical advances, the cost and expertise 
necessary to deploy AI algorithms is another concern, although 
these concerns diminish as interpretability and fairness issues are 
addressed. We explore these issues in further detail below. AI 
interpretability AI is often criticized for being a ‘black box’: a system 
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that produces an output without any explanation or justification. 
While this is perfectly acceptable in low-risk situations, clinical 
decision-making is not a low-risk situation. ‘What?’ may 
sufficiently encompass the question of interest in a general object-
detection task, but ‘why?’ is an inherent part of the question in most 
clinical diagnostic tasks, because it is often crucial to subsequent 
clinical decision-making or at least necessary for acceptance of the 
prediction by both physicians and patients. An ideal AI-based 
clinical diagnostic system should produce accurate predictions and 
provide human interpretable explanations of those predictions. A 
common approach to answering ‘why?’ in computer vision 
applications is to generate a visual overlay of the portions of an 
image that contribute most strongly to an output prediction 
(Selvaraju et al., 2017; Olah et al., 2017). This strategy works well for 
image-based and other CNN-based clinical diagnostic tasks. In fact, 
many of the AI-based clinical diagnostic methods described in this 
review include some form of interpretive analysis. Thus, although 
AI interpretability is an important problem in general, the criticism 
of ‘black box’ systems in current AI-based clinical diagnostics may 
be overstated.  
When complex interdependencies form the basis of a prediction, 
however, accurate interpretation of AI output becomes quite 
challenging (Mittelstadt et al., 2019). Interpretable machine 
learning methods are an active area of computer science research 
(Doshi-Velez & Kim, 2017), but most interpretable AI approaches 
involve the production of a simplified and potentially inaccurate 
approximation of the more complex AI system (Mittelstadt et al., 
2019). Recently, a move towards more interactive models of 
interpretability through ‘dialogue’ with the AI system has been 
proposed (Mittelstadt et al., 2019). This approach allows the human 
user to ask contrastive questions of the AI system in order to explore 
how its output predictions would change if inputs were modified. 
This approach could also facilitate a dialogue between physician 
and patient, with the aid of the AI interpretation system, to help 
them to understand the clinical diagnosis and, in some instances, 
the risk factors that could be modified to change the predicted 
outcome. Thus, further improvements to interpretable AI systems 
could not only substantially enhance the acceptability of AI 
predictions but also enhance the transparency of health 
communication between physicians and patients.  
Data and machine bias  
Interpretative output is crucial for revealing the information found 
by AI systems and identifying biases that might lead to unwanted 
behavior, in addition to being required for acceptability in clinical 
practice. There is substructure embedded in genomic and health 
data. Some substructure is due to truly differing causal relationships 
between alleged risk factors and health outcomes, whereas other 
substructure can be attributed to external factors such as 
socioeconomic status, cultural practices, unequal representation, 

and other non-causal factors that relate to the delivery and 
accessibility of medicine and clinical tests rather than to their 
efficacy (Gianfrancesco et al., 2018; Sirugo et al., 2019). AI systems 
must be carefully applied to differentiate between these types of 
bias. When medical AI systems are not inspected for non-causal 
bias, they can act as propagators of disparity. For example, 
DeepGestalt, the previously described AI system for facial 
dysmorphology analysis, displayed poor accuracy for the 
identification of Down syndrome in individuals of African versus 
European ancestry (36.8% versus 80%, respectively) (Lumaka et al., 
2016). Retraining the model with examples of Down syndrome in 
individuals of African ancestry improved the diagnosis of Down 
syndrome in individuals of African ancestry to 94.7% (Lumaka et 
al., 2016). Genetic risk prediction is also prone to unequal 
performance in different population groups because of 
underrepresentation in the training data (Martin et al., 2019).  
However, not all machine bias can be resolved by addressing 
underrepresentation in training data. In some cases, the bias is 
embedded in ostensibly representative training data. For example, 
gender bias is common in written documents and can be rapidly 
incorporated into NLP systems (Bolukbasi et al., 2016). Extensions 
to these models were required to ‘debias’ word embeddings. In 
clinical applications, EHR data may be representative overall, but 
the contents may include biases that result from the delivery of care 
or physician bias. For example, recent immigrants in Canada are 
more likely to receive aggressive care and die in intensive care units 
than are other residents (Yarnell et al., 2017). Furthermore, the 
substructure of genomic data is correlated with population 
structure, which can lead to the appearance of non-causal trait 
associations (Sohail et al., 2019). However, tools that will help to 
address machine bias are being developed, and careful attention to 
these issues could not only help to resolve machine bias issues but 
could eventually lead to diagnostic systems that are free from 
human bias (Chen et al., 2019).  
 
Conclusions and future directions  
AI systems outperformed state-of-the-art methods and have 
received FDA-cleared for a range of clinical diagnostics, 
predominantly imaging-based diagnostics. This productivity surge 
is driven by the availability of large datasets for training, e.g. large 
collections of annotated medical images or large functional 
genomics data sets, and the developments of AI algorithms and the 
GPU systems used to train them. Currently, the most promising 
applications of AI in clinical genomics appear to be the AI 
extraction of deep phenotypic information from images, EHRs, and 
other medical devices to inform downstream genetic analysis. 
However, deep-learning algorithms have also shown tremendous 
promise in a variety of clinical genomics tasks such as variant 
calling, genome annotation, and functional impact prediction. It is 
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possible that more generalized AI tools will become the standard in 
these areas, especially for clinical genomics tasks where inference 
from complex data (that is, variant calling) is a frequently recurring 
task. These applications have benefited from advances in CNNs and 
RNNs which appear to be particularly well suited for the analysis of 
genomic data. Yet, the utility of AI algorithms as the ultimate 
clinical decision support tool in predicting common complex 
human phenotypes has not been convincingly demonstrated. The 
rise of biobank-scale efforts with longitudinal health data collection, 
such as the UK Biobank (Sudlow et al., 2015) and All of Us Research 
Program (Sankar & Parker, 2016), will potentially provide the 
training datasets necessary to make this goal a reality. Given the 
reliance of AI on large-scale training datasets, it is likely that the 
scalable collection of phenotype data, and not genomic data, will be 
the more difficult barrier to overcome in realizing this ambition. 
Modern DNA sequencing technology allows for the generation of 
genomic data uniformly and at scale, but the collection of 
phenotype data requires numerous data collection modes, and 
tends to be slow, expensive, and highly variable across collection 
sites. Finally, the interpretability and identification of machine bias 
are essential to broad acceptance of AI technology in any clinical 
diagnostic modality.  
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